A DENOTATIONAL SEMANTICS I'OR ML MODULES

*** Draft 25 November 1985 ***

Don Sannella
University of Edinburgh

1 'An introduction to ML modules

blah blah ... blah etc. including signature/structure closure

2 Restrictions and extensions

Some restrictions to ML have been adopted in formulating the semantics which appears
below. Only the purely applicative subset of ML is treated (so assignment and exceptions
are not permitted). Furthermore, we do not allow use of polymorphic types or transparent
type bindings with complex right-hand sides (e.g. tupe t = t1 % 12 is forbidden while

type t = t1 is allowed), and we do not allow a type and value with the same name to be
present in the same context. Assignment is forbidden for foundational reasons, although it
would probably be possible to extend the foundations to permit it. The other restrictions
are purely for the sake of simplicity. The semantics of type abstraction has not yet been

included, and the effects of infix and nonfix directives has been relegated to the level of

concrete syntax.

Some of the syntactic forms listed in the next section are not present in MacQueen's
proposal or are mentioned there as possible extensions but not required. They have been
included because adding them does not further complicate the semantics. The order of
specifications in a signature is (intentionally) not taken to be significant in signature

matching. Types and values are treated uniformly with respect to sharing, which is an

extension to MacQueen's proposal.

Q

3 Syntax

PROGRAMS prog

prog = signature sigb, and ... and sigb, n>1
functor funb; and ... and funb, n>
dec

prog {;} prog'

SIGNATURE BINDINGS sigb
sigb 1= atid = sig

FUNCTOR BINDINGS funb

funb 1= atid(plist) {: sig} = str
plist ::= atid, : sig,;, ..., atid, : sig, i{sharing patheq,; and ...
patheq ::= id, = ... = id,

STRUCTURE BINDINGS sirbd

strd = atid {: sig} = str

SIGNATURES sig

atid
sig spec end

sig =

spec ::= val atid; :
type spectd
datatype db

spec {;} spec’

ty, and ...

structure specsirb; and ...

atid
atid = id®
spectb and spectd’

spectb ::=

specstrb ::= atid : sig

STRUCTURES str

str := id
struct declist end
str S'Lg3
atid(stry, ..., str,)

and atid, : ty,

patheqn}

and specstrb, {sharing patheq; and ...

n>0, m>1

n>1

and patheq,,}’ ;le>11

MacQueen's proposal does not require that sharing constraints be allowed except in functor parameter specifications, but it is not

more difficult to allow them in signatures as

2
Type identities in signatures are not required by MacQueen's proposal, but they are easy to provide.

3
This form does not appear in MacQueen's
Standard ML.

well.

proposal, but it is an easy and natural addition and seems to be in the spirit of

Draft 25 November 1985

DECLARATIONS dec

dec 1= val vb
type tb
datatype db
local declist in declist' end

open id, ... id, n>1
structure strd,; and ... and sirbd, n>1
declist 1= dec
declist {;} declist'
TYPE BINDINGS b and DATATYPE BINDINGS db
tb ::= atid = 1id
tb and tb'
db ::= atid, = consirs, and ... and atid, = constrs, n>1

The syntax of value bindings (vb) is just as it is in the Standard ML core language, except
that only an atid (not an id) is allowed in a binding occurrence on the left-hand side of a
value binding. A{id denotes an atomic identifier (a sequence of alphanumeric characters)

while id denotes a normal ML identifier, possibly containing dots: 1id ::= atid | atid.id .

4 Values

A sigval (the denotation of a signature) is a 4-tuple ®ig = (¢,N,7.Z) where:

Substrs[@ig] =4, ¢ is a map id — 1id

Names[@ig] =4 N is a set of identifiers

AlgSig[®ig] =4er & is an algebraic signature, i.e. a set of type names T and a
set of value names V where each veV is assigned a type built from the type
names in T and the type constructors - and *; Names[Z] =gy T UV

- T : N - Names[Z] is a function

A strval (the denotation of a structure) is a 6-tuple &tr = (tag,£,N,7.5,C) where

Sig[@tr] =4, (€.,N.7,L) is a sigval, Tag[@tr] =ges tag is an identifier and Alg[@tr] =4, C is a
Z)—algebra4 associating interpretations to the type and value names of £. Think of € as the
code associated with the types and values of T (in practice, only values have code
associated with them; types are merely conceptually associated with sets of values).
Sometimes it is convenient to write a strval as a (id x sigval x algebra)-triple instead of as

a B6-tuple. For any sigval &ig, the class of all strvals &tr with Sig[@tr]=Gig is denoted
Str(®ig].

Our use of the terms algebraic signature and alg

ebra is somewhat loose, since we are dealing with higher-order types and partial
functions. This misuse will not lead to any problem

s since no use is made of any results from algebra.

Draft 25 November 1985

MacQueen's proposal gives closure rules which signatures and structures are required to
satisfy. These rules are also satisfied by every sigval and strval. But although the
signature closure rule indirectly constrains structures by requiring that each one has a
signature satisfying that rule (this means in effect that every type used must have a name
belonging to the structure), not all strvals satisfy such a constraint. This is because
strvals are used to denote partially-elaborated structures, which are not required to

satisfy this constraint, as well as fully-elaborated structures.

Primitive-str is a strval containing the pervasive type and value bindings described in
section 5 of the Standard ML core language proposal (bool, int, true, etc.). These types

and values are automatically a part of every structure and every signature.

The sigval/strval component ¢ and the strval component lag are needed to deal with
structure sharing and the generative aspect of structure declaration, respectively. Since
each elaboration of an encapsulated structure declaration or functor application creates a
distinct structure, each strval must carry a distinct tag to distinguish it from strvals
which are identical but created separately. This also provides a means by which strvals
which are really the same can be identified. The component ¢ gives the correspondence
between substructure names and their tags; if a structure A in the structure environment
has a tag ¢ then struct ... structure B = A ... end creates a strval (with its own tag) where
the substructure name B is associated with the tag ¢. Thus in a strval, ¢ indicates the
extent to which substructures share with each other and with external structures and

substructures. In a sigval, ¢ only reflects internal substructure sharing since sharing with

external structures/substructures is not possible.

The sigval/strval components N and 7 are needed to deal with sharing of types and values.
N contains names which can be used in programs to refer to types and values, £ contains
the unique internal names of these types and values (associated in a strval with
interpretations by C), and T gives the correspondence between names in N and the internal
names in X. Several names in N may correspond to the same internal name in %, and if
an internal name in the algebraic signature component of a strval appears in the algebraic
signature component of another strval then it denotes there the same type or value; again,
in a sigval sharing with types/values belonging to other sigvals cannot occur (except with
pervasive types/values). Complex type synonyms (e.g. tupe t = t1 % t2) are forbidden in
order to simplify the semantics. Such synonyms could be allowed by making T map names
to types built from the type names in £ and the type constructors —» and %. A sigval or
strval includes types and values defined at "top level” within the corresponding
signature/structure as well as types and values belonging to substructures. Types and
values belonging to a substructure A have names of the form A.n; furthermore, every type

or value having a name of this form is regarded as a part of A.

Draft 25 November 1985

This is not the only possible way of representing signature and structure values, although
any alternative representation must take proper account of the complications mentioned
above (generative structure declarations, structure sharing and multiple names for a single
type or value). Other possible representations are discussed below under "On the

representation of signature and structure values”.

A funval (the denotation of a functor) is a 6-tuple JFun = (params,Big,q, str,p,9,m) where:
- params is an atid-list (the formal parameter names)

- @igp,, (the combined formal parameters with sharing taken into account) is a sigval
as above

- sir is a structure expression (the body of the functor, qualified by the result
signature if any)

- p. ¥, ™ are the structure, signature and functor environments at the point of
declaration

The structure and signature environments p and ¥ are maps atid — strval and

atid — sigval respectively. The functor environment 7 is a map atid — funval. The
structure environment includes bindings of structures occurring earlier than the construct
currently being elaborated, as well as (if the current construct is a structure) bindings of
its substructures. The latter is necessary because in a nested context a substructure of

the current structure is just like a previously-defined structure.

5 Semantic operations

Convention: A operation of type ...xstrvalx... - strval gives rise to a operation with the
same name of type ...xsigvalx.. > sigval. by simply ignoring the tag and algebra
components of the strval argument(s). There is one exception to this rule: the operation

addsubstrs, for which something slightly more complex must be done — see below.

Notation: When ¥ and I' are algebraic signatures and Zc¥’, tycyr denotes the inclusion.
This notation is also used when izp is an injection rather than an inclusion (as is the case

when the construction of I’ involves tagging: &' = ... U tag(Z)).

5.1 Restricting to a subset of the names in a strval

restrict(@tr,N') is that sub-strval &tr' of Gtr such that Names[®tr'] = N'. Note that Gtr'
may contain anonymous types even if @tr does not. The result is regarded as the same
structure for purposes of sharing iff the restriction is trivial (no names are forgotten). A
substructure in @tr is in the result if any of its type or value names are retained, and it

is regarded as a "new"” substructure iff some of its type or value names are forgotten.

Draft 25 November 1985

restrict : strval x id-set - strval

restrict({tag.¢,N,7,Z,C),N') =

tag if N=N'
let tag' = . .
a new tag otherwise 1in
let ¢' = {(id—t)€¢ | IneN'. n is of the form id.m

and VYneN. n is of the form id.m implies neN'}]
U {id—tag(id) | idedom(¢), tag(id) is a (different) new tag for each id,
IneN'. n is of the form id.m
and 3n€N. n is of the form id.m and ngN'} in
let &' = the smallest subsignature of £ containing T(N') in
(tag', ¢, N', T[N', 2", c|z.)
error if N'¢N

5.2 Fitting a strval to a sigval

fit(@tr,Big) checks if the candidate strval @tr matches the target sigval @ig; if it does then
the strval ®@tr' which results from restricting @tr to fit @ig is returned. The result of fit is
guaranteed to be signature-closed (this is a consequence of the fourth error check below).
The third error check might be relatively expensive to implement in practice, since it
involves examining every pair of names in ®ig. However, if two structures A and B share
then every pair of names A.n, B.n shares. This means that if the fifth error check

succeeds then some of the pairs of names in &ig need not be checked.

Jit : strval x sigval - strval
fit({tag,.¢,N,7,5,C).(¢' N',7'.2')) = restrict((tag,t,N,7,2,C),N')
error if N'¢N
or types/values in T'(N') do not correspond with types/values in 7(N'),
i.e. AneN'. 7'(n)eTypes[Z']<A>T(n)eTypes[L]
or types/values in T7(N') do not share at least as much as types/values in 7'(N'),
i.e. An,meN'. 7'(n)=7'(m) and T(n)#r(m)
or the types of wvalues in T(N*') dv nvi- correspund with lhe lypes of- values in {N);
i.e. AneN'. 1'(n)eVals[Z'] and ‘r(’r"l(type[T’(n)]))#type[’r(n)]
or substrs in the candidate do not share at least as much as those in the target,
i.e. 3id,id'e€dom(¢'). ¢'(id)=¢'(id') and £(id)AE(id’)

5.3 Checking if a strval has a closed signature
signature-closed(®@tr) yields true if @tr satisfies the signature closure rule (i.e. if all types

in AlgSig[®tr] have names in Names[®tr]) and false otherwise.

signature-closed : strval - bool

true if Vit€Types[Z]. JideN. 7(id) = ¢

signature-closed (tag,£,N,7,Z,C) = {f . h .
alse otherwise

Draft 25 November 1985

5.4 Combining strvals/environments

@tr U @tr' is the union of @tr and &tr', containing all of the type and value bindings in &tr
and ®tr', which must not have type, value or substructure names in common. Gtr+ Gtr'
adds the bindings of &tr' to those of @&tr, where bindings in &tr' may supercede those in
Gtr. If Gtr' contains a substructure with the same name as a substructure of Gtr, the
entire substructure from ®tr is replaced by the one in &tt' (not just the types and values
with common names). Note that because each newly-declared type and value is assigned a
unique internal name, &tr and @tr' are guaranteed not to conflict on the level of their
algebra and algebraic signature components. Both U and + produce a "new" strval. The

analogous operation on maps id—a (e.g. environments) is also provided.

U : strval x strval - strval

(tag.¢,N,7,2,C) U (tag',¢ N',T'.2.C') =
let tag” be a new tag in
(tag", E UE, NUN,TUT, Z UL, CUC)
error if N N N' # ¢
or dom(¢) N dom(¢') # ¢

+ ¢ (id—a) x (id—a) » (id—«)

6'(id) if idedom(d')
(6 + 6")(id) = 6(id) if idg¢dom(é') and idedom(d)
undefined otherwise

+ : strval x strval - strval

(tag.¢&,N,7,2,C) + (tag' ¢ N'.7.2'C') =

let N" = [ideN | id is not of the form id'.n for some id'€dom(¢')} in
let 7":N"UN'>Names[ZUZ'] be defined by

) T'(id) if idedom(t’)

miay = { 1YV . .
7(id) if id¢dom(t') and idedom(T) in

let tag" be a new tag in
restrict((tag" é+¢ N'"UN', 7" ZUZ',CUC'), N'"UN')

5.5 Generating unique internal names for types/values

tag(@tr,X') is the strval resulting from @&itr by changing the internal names of types/values
in AlgSig[@tr] -~ £' to make them distinct from all other internal type/value names (the
function tag: signature-fragment - signature-fragment produces the new internal names

by attaching uniquely-generated tags to them).5 The result is a new strval, containing new

Of course, tag is not a function since it produces different internal names each time it is called. It could be made into a
function by passing to it a unique tag as an extra parameter. These tags could be taken from a list of tags passed as an extra
parameter to the various functions which call tag. All these tags would originate from a list of tags passed to Preg. These details
have been suppressed because they would significantly clutter the semantic equations and hide more important details; see

D. Sannella “A set-theoretic semantics for Clear", Acta Informatica 21, pp. 443-472 (1984) where in an analogous situation these
details have not been suppressed.

Draft 25 November 1985

substrvals (except for those with signatures wholly within Z').

tag : strval x signature - sitrval
tag({tag,¢,N,7,2,C),2') =
let " = tag(Z - Z') U (ZnZ') in
let tag' be a new tag in
let ¢ = {id—tag(id) | id€dom(¢), IneN. n is of the form id.m and 7(n)¢T’,
and tag(id) is a (different) new tag for each 1id)}
v {id—¢(id) | idEdom(é)'and VYneN. n is of the form id.m implies T7(n)er'} in
(tag', &, N, Togcpn Z, tpcpn(C))

5.6 Extracting a substructure from a strval
substructure(id,@tr) is the strval corresponding to the substructure id of Gtr.

substructure : id x strval - strval
substructure(id,(tag,£(,N,7,2,C)) =
let ¢ = {n—t | (id.n—t)e¢] in
let N' = {n | id.neN} in
let 7' = {n—id.n | id.ne€NT in
restrict((¢(id).& . N',7",.2.C), N')

5.7 Adding new substructures to a strval

addsubstrs({(atid,,&tr,),...,(atid,,&tr,)],&tr') is the strval which results from adding

@try,...,Btr, to Gtr' as substructures named atid,,...,alid, respectively. The result is a new

strval.®

addsubstrs : (atid x strval)-set x strval - strval

addsubstrs({(atid; (tag,.¢;,.N{,7,2,,C))....(atid, ,(tagn ép Np T Bp.Co))}, Btr') =
let tag' be a new tag in

let ¢' = {atidy—tag;,....atid,—tag,} U latid;.id—id | idedom(¢,)}e¢,

v ... v
{atid,.id—id | idedom(g,)}ot, in
let N' = {atid;.m | meN} u . . . U {atid,.m | meN,} in
let 7' = {atid;.m—m | meN, oty U . . . U {atid,.m—m | meN,}oT, in
let ' =3, 0u...UZ,in
let C'"=C,u...uUC,1in

(tag', &', N', 7', £, C') U Gtr'

6

The convention for viewing strval operations as operations on sigvals does not work in the case of addsubsirs because the-Subgirs
component of the result depends on the Tag components of the strvals in the list which forms its first argument. To meke it work
for sigvals, it is necessary to regard every sigval in this list as tagged by a (different) uniquely generated tag.

Draft 25 November 1985

5.8 Idenlifying types, values and substructures in a sigval

identify-type(ta,tb,Big) is the sigval resulting from &ig when the internal names of the
types named fa and tb are identified. A new internal name is chosen for the type in the
result, unless either ta or ¢{b names a pervasive type. If both ta and tb name a pervasive

type, then they must name the same type.

identify-type : id x id x sigval - sigval
identify-type(ta,tb,(¢,N,7,2)) =

T(ta) if T(ta)eTypes[primitive-str]
let internal = T(tb) if T(tb)eTypes[primitive-str]
a new tag otherwise in
let 0 = 1oy - rjtaee) YV {T(ta)—internal,7(tb)—internal] in

(& N, 10, ())
error if T(ta)gTypes[Z] or T(itb)€Types[Z]
or T(ta)ETypes[primitive-sir] and T(tb)eTypes[primitive-str] and 7(ta)#r(td)

identify-value(va,vb,@ig) is the sigval resulting from ®ig when the internal names of the
values named va and vb are identified. Note that va and vb must have the same type. A
new internal name is chosen for the value in the result, unless either va or vd names a
pervasive value. If both wa and vb name a pervasive value, then they must name the same

value.

identify-value : id x id x sigval - sigval

identify-value(va,vb,(¢,N,7,2)) =

T(va) if T(va)eVals[primitive-str]
let internal = T(vb) if T(vb)eVals[primitive-sir]
a new tag otherwise in
let 0 = 1y - rppawty Y {T(va)—internal, T(vb)—internal] in

(&, N, 700, o(Z))
error if T(va)gVals[Z] or T7(vbd)¢Vals[Z]
or type[7(va)] # type[r(vd)]
or T(va)eVals[primitive-str] and T(vb)eVals[primitive-str] and T(va)#T(vb)

'ident'if'y—st'ructure(sa,sb,@ig.) is the sigval resulting from &ig when the substructures named
sa and sb are identified. A new tag is chosen for the substructure in the result. All of
the corresponding types/values in the subtructures named sa and sb are also identified;
the types must be identified first in case some of the values to be identified have types

which include them.

Draft 27 November 1985

10

identify-structure : id x id x sigval - sigval

identify-structure(sa,sb,8ig) =
let No = {m | sa.me&Names[Gig]}
and Nb = {m | sb.meNames[@ig]} in
let {(tay,tdy),...(ta,,tb,)] = {(sa.m,sb.m) | meNa and 7(sa.m),7(sb.m)eTypes[Gig]}
and {(va;vb;),...(vagvby)} = {(sa.m,sb.m) | meNa and T(sa.m),7(sb.m)eVals[®ig]} in
let ®ig' = 'identify—type(tal,tbl,...,'ident'ify—type(tap,tbp,@ig)...) in
let (¢ .N",7".2") = 'ident'ify—'va,lue('va,l,'ubl,...,'ide'nt'ify—'value('uaq,'ubq,@ig')...)
let sirtag be a new tag in
let @ = loogom(sr) - gfsase) Y 1€ (sa)—strtag, ¢’ (sb)—strtag] in
(g0, N', 7", ")
error if Na # Nb
or T(sa.m)eTypes[Big] <> T(sb.m)eTypes[@ig] for some meNa
or sagdom(¢") or sbgdom(¢")

identify({{a,.b;),....{(a,.b,)}.Big) is the sigval resulting from ®ig when the
types/values/substructures named a; and b; are identified. Types are identified first, then

substructures, and finally values.

identify : (id x id)-set x sigval - sigval

identify({{(ay.b),....(a,.b,)],Big) =
let {(tay,tby),....(ta,,tb,)} = {(a;,b;) | a;,b;eNames[®ig] and T(a;),7(b;)€Types[Gig]}
and {(sa;,sby),...(sagsby)} = {{a;,b;) | a;,bjedom(¢)}
and {{(va,,vb,),....(va,vb,)} = {{a;,b;) | a;,b;€Names[@ig] and 7(a;),7(b;)€Vals[Big]} in
let Big' = identify-type(ta, tby,....identify-type(ta,,tb,,Big)...) in
let @ig" = ident'ify—st'r'u.cture(sal,sbl,...,ident'i,fy—st'ruct'uxre(sap,sbp,@ig’)...) in
identify-value(vay,vdy,....identify-value(va, vb,, Big")...)
error if mone or more than one of the following conditions are satisfied for some a;,b;:
- a;,b;€Names[@ig] and 7(a;),7(b;)€Types[Gig]
- a;,b;edom(¢)
- a;,.b;eNames([®ig] and 7T(a;),7(b;)€Vals[Sig]

5.9 Adding new type/value names

joinnames(@ig,newnames) is the sigval @ig augmented by the names in newnames, each of
which is provided with a distinct internal name. The names in newnames are required to

be atomic, so none of the substructures of @ig are altered.

joinnames : sigval x signature-fragment - sigval

joinnames((¢,N,7,2), newnames) =
let &' = ¥ U tag(newnames) in
(¢, NuNames[newnames], Totgcp U tnewnamesczs =)
error if N n Names[newnames] # ¢

or any of the names in newnames is non-atomic

joinanon(®ig, newnames) is the sigval @ig augmented by the (internal) names in newnames:

Draft 25 November 1985

11

external names are not provided.

joinanon : sigval x signature - sigval

joinanon({¢,N,7,2),newnames) = (£, N, 7, T U newnames)

bind({(ay.by),....(@p.b,)},&tr) is the result of adding the names {a,,...,a,} to Gtr and binding
them to the internal type names {b,,...,b,} already in @&tr. The result is a new strval. The

names a,,...,a, are required to be atomic, so none of the substructures of &tr are altered.

bind : (atid x id)-set x strval - strval

bind({{a;.by),....{a,,by)}.(tag,&,N,7,2,C)) =
let tag' be a new tag in
let ' = {a;—by,...,a,—b,} in
(tag', &, N U fay,....,a,}, T U T, %, C)
error if N 0 {ay,...a,) # ¢

6 Semantic functions

The subscripts on a few of the semantic functions indicate the context in which the

functions apply (e.g. ty/w,‘, gives the semantics of a type identifier appearing within a

signature expression sig ... end).

Preg : pTOg
- strval
= structure-environment - signature-environment - functor-environment
- (strval x structure-environment x signature-environment x Ffunctor-environment)

Sigh : sigb
- signature-environment
- (atid x sigval)

Fund : funb
- structure-environment -~ signature-environment - functor-environment
- (atid x funval)

Plist : plist
- signature-environment
- (atid-list x sigval)

Patheg : _pa.th,eq
- sigval
- (id x id)-set

Ftrd : strb
- strval

- structure-environment - signature-environment - functor-environment
- (atid x strval)

Sig : sig
- signature-environment
- sigval

Spec : spec
- sigval
- signature-environment
- sigval

Draft 25 November 1985

3

Specth : spectd
- sigval
- sigval

Fprecatnl : specstrd
- stgval
- signature-environment
- (atid x sigval)

Ftr : stlr

- structure-environment - signature-environment - functor-environment
- strval

Dee : dec
- strval

- structure-environment - signature-environment - functor-environment
- (strval x structure-environment)

Decliskt : declist
- strval

- structure-environment - signature-environment - functor-environment
- (strval x structure-environment)

I . tb
- strval
- structure-environment
- strval

Z)Lw? : db
- sigval
- sigval

strval
structure-environment
- strval

Ll

uafly,? c1id
> sigval
- internal-value-name x type

- strval
- structure-environment
-~ internal-value-name x type

fbp/bwy‘,’ : 'Ld
- sigval
- internal-type-name

bypog, @ id
- strval
- structure-environment

- internal-type-name

7 Semantic equations

The result of Preg is a strval containing all the new (top-level) type and value bindings
introduced by the program, together with any new bindings introduced into the structure,
signature and functor environments. A program prog is interpreted in the initial
environment (p,,%,,m) in the context of the strval primitive-str. The environment which

results from interpreting prog is then the combination of primitive-str, Pa Yo, Ty and the

Draft 25 November 1985

13

new bindings given by ?mo?[[p'rogl] primitive-str pg Yo my. Note that a program does not
amount to an encapsulated structure declaration surrounded by an implicit struct ... end.
First, signature and functor declarations are only permitted at top level, not in structure
expressions. Second, the strval produced by ?mg,[[dec]] does not include the type and value
bindings produced by structure declarations it contains (in contrast to the strval produced
by Dec[decl); these contribute to the structure environment only. Finally, there is no

sense in which the strval produced by Preg must satisfy the signature closure rule.

?mg,[]:signature sigb; and ... and sigh,]l Gt: pY mT=
let (atid;,@ig,),....(atid, Big,) = SLighllsigb,] v, ..., Sigbllsign,] ¥ in
(¢, ¢, {atid;—Gig,, ..., atid,—Gig,}, ¢)
error if atid;=atid; for some i#j

ﬂ’myl[functor' funb, and ... and funb,]l Gtr p ¥y 7 =

let (atidy,Funy),... (atid,,Bun,) = Funblfund] p v m, ..., FunbllFund,] p v m in
(¢, ¢, ¢, latid;—Funy, ..., atid,— Fun,])
error if atid;=atid; for some i#j

?my[[dec]] Gtr p Yy ™ =
let (&tr', p') = Dec[ldec] @tr p ¥ 7 in
let toplevelnames = [atid | atideNames[@tr']] in
(restrict(@tr',toplevelnames), p', ¢, ¢)

Progllprog i} prog'll &tr p v m =
let (@te', p', ¥', ') = .?ro?[[p'rog]] Gtr p Y m™in
let (Gtr", p", ¥", ") = Progllprog'l]l (Btr + @t:') (p + p') (¥ +) (m + 7') in
(Btr' + &te", p' + p", Y + Y, 7w +)

Sighllatid = sigll v = (atid, Siglsigl ¥)

Functors are treated as macros in this semantics, in the sense that the body of a functor
is kept in its funval as a syntactic object rather than as some sort of parameterised
strval. However, the parameter declaration is processed at definition time and the functor
body is checked to ensure that it is well formed and that any application will produce a
valid strval with the declared signature (if one is given). The environment at declaration
time must be saved for use at application time since by then some of the identifiers used
in the functor body might have been bound to new values. See below under "Comments on

the semantics of functors” for a semantics in which functors are "compiled” at definition

time.

A functor with several parameters is treated as a functor with a single parameter having a
substructure of the appropriate name for each of the several parameters. In checking

whether applications of the functor will produce valid strvals which fit the declared resuit
signature, the functor body is elaborated in a structure environment augmented by binding

the formal parameter names to dummy actual parameter structures (Cdummy below is an

Draft 25 November 1985

14

arbitrary algebra of the appropriate signature, and taummy 1S an arbitrary tag). The result

is then fitted to the declared result signature, if one is given. Note that the signature of

the final result of this process differs from the declared signature in that it shares types

and values with ®ig,,, in a way which reflects the references which the functor body makes
to the formal parameters. The signature closure rule requires the structure declared by a
functor body to have no anonymous exported type names. In the form

atid(plist) : sig = str this is guaranteed by the requirement that the body fits the given

signature which must itself satisfy that rule.

Funbatid(plist) = str] p ¢ m™ =
let { atid; ... atid,, @igye,) = Plstlplist] y in
(atid, (atid,...atid,, @igy,, str, p, ¥, m™))
error if —signature-closed(Stlstr] p' v =)

where p' = p + 2atid1'—>substructure(atidl,(tdummy,@igpar,cdummy)),...}

Funtatidtplist) : sig = str]l p ¢y © =
let (atid; ... atid,, @igye,) = Plsi[plist] y in
(atid, (atid,...atid,, @igye, strisig, p, ¥, ™))
error if Stllstr : sigl p’ Y m fails
where p' = p + §at'i,dl'—>subst'ructu're(at'idl,(tdummy,@igpa,,Cdummy)),...}

Plstlatid, : sig,, ..., atid, : sig,] ¥ =
let ®ig' = Specllstructure atid, : sig, and ... atid, : sig,] Sig[primitive-str] ¥ in
(atid, ... atid,, Sig[primitive-str] U @ig')

Plstlatid, : sig,, ..., atid, : sig, sharing patheq, and ... patheq,]| ¥ =
let @ig' = Yﬁao[[structure atid; : sig,; and ... atid, : sig,

sharing patheq, and ... patheq,,] Sig[primitive-str] ¥ in
(atid, ... atid,, Sig[primitive-str] U @ig')

Pathegllid, = ... = id,] @ig = {(idy.id;) | 2<j<n)

A structure binding of the form atid = str has the effect of adding a substructure called
atid to the environment of current bindings (by adding bindings of all the types/values in
str, with their names prefixed by atid) as well as to the structure environment. The resuilt
of Strl is the identifier atid together with the strval to which it is to be bound. The
environment of current bindings must not already contain a type/value with a name of the
form atid.n since this would cause it to be regarded as a part of the new substructure.
The signature closure rule requires the declared structure to have no anonymous exported
type names. The form atid : sig = str has the same semantics, except that the structure
is required to fit the declared signature. If this is the case, then the resulting structure

is guaranteed to satisfy the signature closure rule.

Draft 25 November 1985

15

Sbllatid = str] @tr p ¥ w =
let @tr' = Ytlstr]l p v m in
(atid, Gtr')
error if Names[@tr] contains identifiers of the form atid.n
or —signature-closed(@tr')

Stblatid ¢ sig = str] @tr p ¥y m = (atid, Sblstr : sigl p v ©)
error if Names[@tt] contains identifiers of the form atid.n

Sigllatid] v = y(atid)
error if atid€dom(y)

Sigllsig spec end] ¢ =
let ®ig' = Spec[lspecl Siglprimitive-str] y in
Sig[primitive-str] + Gig’

The result of Ypeo (resp. Specth) is a sigval containing all the new type and value bindings
introduced by the specification (resp. specification type-binding), as well as the old
internal type names needed to express the types of the new values. Although these will be

anonymous in the immediate result of Ypee (resp. Specth), names will eventually be bound to

them; otherwise they would not be accessible.

Specllval atid, : ty; and ... and atid, : ty,ll Gig ¥ =
let newnames = {a,t'idj:[[tyj]] | IItyj]] is the internal type denoted by ty; where the
l denotation of a type name id is given by ty/w_,i?[[id]] Big} 1
let oldtypes = the (internal names of) types which newnames refers to in
joinnames(joinanon(¢,oldtypes),newnames)
error if atid;=atid; for some i#j

or Names[®ig] n {atid,,...,atid,}] # ¢
Speclltype spectb] Big ¥ = Spectt[spectd] ®ig
Shecldatatype db] Gig ¢y = .@L,"ﬂdb]] Gig

Speclspec ;3 spec'] ®ig y =
let Gig' = J’/W,o[[spec]] Gig ¥ in
let Gig" = Shecllspec'] (®ig + ®ig') ¥ in
Gig' + ©ig"

Types and values declared in a structure binding contribute to the environment of current

bindings, with names prefixed by the name of the (sub)structure in which they appear.

d’/wo[[structure specstrb, and ... and specsirb,] @ig ¥ =

let (atid, Bigy),....(atid, Big,) = Specstrblspecsird] Big ¢, ..., Fpocstrblspecstrd,] Gig ¥ in
addsubstrs({(atid,,Big,),....(atid,,Big,)}.¢)
error if atid;=atid; for some i#j

Draft 25 November 1985

16

.f/uw[[structure specsitrb; and ... and specsirb, sharing patheq, and ... and patheq,] ®ig ¥ =
let (atid,,@igy),....(atid, Big,) = Specstrbllspecstrd] Gig v, ..., Spostrblspecsird,l] @ig v in
let @ig' = addsubstrs({(atid,,&ig,),...,(atid,, Gig,)}. ¢) in
identify(?dkw?ﬂ:patheql]] Gig' U ... U ?aé/w,?[[path,eqm]] @ig', Gig')

error if atid;=atid; for some i#j

Specth[atid]] @ig = joinnames(¢,{atid})
error if atideNames[Gig]

Specth[atid = id] Gig =
let idmeaning = fpoy [id] Gig in
bind({(atid,idmeaning)},joinanon(e,{idmeaning}))
error if atid€eNames[Gig]

.V’/wotlu[[spectb and spectb'] @ig =
let ®ig' = Spectbllspectd] Gig in
let Big" = Specttllspectd'] ®ig in
Gig' + Gig"
error if Names[@ig'] N Names[Big"] # ¢

Structure bindings of the form atid : sig are permitted in specification contexts only. A
substructure called atid containing the types and values in sig contributes to the
environment of current type and value bindings. These types and values are forced to be
distinet from all the types and values already present, with the exception of pervasive
types/values. That this is necessary is shown by the example declaration

structure A : sig and B : sig , since A.n is not expected to share with B.n for a type/value

n in sig (unless e.g. n=bool).

Spoostrbllatid : sigll @ig ¥ = (atid, tag(Figllsig] y.AlgSig[primitive-str]))
error if Names[@ig] contains identifiers of the form atid.mn

According to the closure rule for structures, a structure expression is allowed to contain
references to previously-defined structures, signatures and functors but not to current
type/value bindings (except to pervasive primitives from primitive-str); consequently Si
does not require access to the current strval. The result of ¥4 does not necessarily
satisfy the signature closure rule (which implies that structures have no anonymous

exported type names) since the result of fitting a non-complying structure to a signature

will satisfy that rule.

Stlatid] p v © = p(atid)
error if ~wlid€dom(p)-

Stellatid.id]] p ¥ 7™ = substructure(id,p(atid))
error if atid€dom(p)

Draft 25 November 1985

17

Stnllstruct declist end] p ¥ 7 =
let (@tr, p') = Declinilldeclist] primitive-str p ¥ m in
primitive-sir + Gtz

Stollstr 2 sigl p v 7 = fit(Seelstr] p v . Jigllsigl)

The result of applying a functor to a list of actual parameters is obtained by elaborating
the body of the functor in the declaration-time environment augmented by binding the

parameter names to the actual parameters (after fitting them to the formal parameter

signatures).

‘f&t[[atid(strl,...,st'rnl]] pY =
let (atid,...atidy,, @igpe,, str, p', ¥', ©') = m(atid) in
let @4’ = fit(addsubstrs({{atid, Stlstr;] p v),

(atid, Flstr,] p ¥ m)].primitive-str), Bigpe,) in
Stnllstr]l (p' + latid,— substructure(atid,,Gtr'),...}) y' =
error if atid€dom(m)
or if n#m

The semantics of type and value declarations is incomplete in that it does not give all the
details of the interpretation of the type/value bindings themselves, but only the details of
how they contribute to the environment of current bindings. The result of Dec is a strval

containing all the new bindings introduced by the declaration as well as the old internal

type names needed to express the types of the new values, together with any new bindings
introduced into the structure environment. It is possible to cause anonymous types to be
added to the current structure with a declaration like wval f=A.g or datatype t = f of A.tl .

Names must eventually be bound to these types or else the signature closure rule will be

broken.

Decl[val vb] ®tr p Yo o=
let newnames = the identifiers which vb binds, with their types (using internal type n
let oldtypes = the (internal names of) types which newnames refers to in
let @ig = joinnames(joinanon(p,oldtypes),newnames) in
let C = the AlgSig[®igl-algebra defined by vb (including carriers associated with
oldtypes, taken from Gtr) in

((@ig.C). ¢)
Declltupe tb]l @tr p v m = (Jiltb] Btr p, ¢)
Dec[[datatype db]l Gtr p ¥ 7 = (Dby, [db] &tr p, ¢)
Decl[local declist in declist' end] Gtr p Y =

let { &tr', p') = Declist[[declist] Gtr p ¥ 7 in

Declist[declist'] (Btr + @tr') (p + p') ¥ m

Decllopen id] @tr p ¥ m = (substructure(id,&tr), ¢)

Draft 25 November 1985

Decllopen id; idy ... id,]] @tr p Y T = Declistopen idy; open idp; ...; open id,]l @tr p ¥ ™

Types and values declared in a structure binding contribute to the environment of current
bindings. The newly-declared structure also contributes to the structure environment for
the benefit of nested encapsulated structure declarations, to which it appears as a

previously-defined structure. Sharing constraints are not permitted in structure contexts;

sharing in a structure arises by construction rather than by declaration.

Dec[[structure strd, and ... and strb,] Gtr p Y=
let (atid,,Gtr,),....(atid, Gtr,) = Lillstrb]l Gtr p v 7, Fbllstrd,] Gir p v 7 in
(addsubstrs({(atid;, &try),....(atid,, Gtr,)].¢), {alid;—Gtr,,...,atid,—Str,])
error if atid;=atid; for some i#j

Declist[dec]] @tr p ¢ m = Declldec] Gtr p v =

Declistll declist {3} declist']] &tr p ¥ 7™ =
let (Gtr', p') = Declist[declist] @tr p ¥ 7 in
let (Gtr", p") = Declist[[declist'] (Btr + &tr') (p + p') ¥ ™ in
(Btr' + Btr”, p' + p")

The interpretation of type, datatype and value bindings is as in the core language, subject
to the provision that the denotation of a reference to a previously-defined type/value is
given by the semantic functions tupeg,/valy, . This semantics does not keep track of which
values are constructors, but this would be an easy refinement to add.

Fillatid = id] @tr p =

let idmeaning = twwﬂn[[id]l 3tr p in

let Big = bind({{atid,idmeuning)},joinanon(¢,{idmeaning})) in
let C = the AlgSig(®igl-algebra with |Clidmeaning = |Alg[@tr]|idmmning in
(®ig,C)

Fu[tb and tb']l ®tr p = (Fltb]l Bt p) + (I[tb'] ©tr p)

.‘Dbyiyﬂ:a,tidl = constrs, and ... and atid, = constrs,] ®ig =7
let ®ig' = joinnames(®ig,{atid,,...,atid,}) in
let newvals = the constructors in constrs,,....constrs, together with their types in
let oldiypes = the internal names of types which newwvals refers to in

joinnames(joinanon(®ig',oldtypes),newvals)
error if atid;=atid; for some i#j
or Names[constrs;] N Names[constrs;] # ¢ for some i#j
or fatid,,...,atid,} N Names[newvals] # ¢
or Names[®ig] n ({atid,,...,alid,}] U Names[newvals]) # ¢

.‘DL“,‘.? and iy, should be changed to relurn only the new types and values; at present they return the old types/values as well.

Draft 27 November 1985

19

Dby, [atid, = constrs; and ... and atid, = constrs,] @tr p =
let ®ig' = joinnames(Sig[&tr],{atid,,...,atid,]) in
let newvals = the constructors in constrs,,...,constrs, together with their types in
let oldtypes = the internal names of types which newvals refers to in
let Gig" = joinnames(joinanon(®ig' oldtypes),newvals) in

let C" = the AlgSig[®ig"]-algebra defined by the type and constructor bindings
(including carriers associated with oldtypes, taken from Gtr) in
(@igu,cu>

The functions ualy", lewy‘? and waly,, fypey, interpret value and type names in signature and
structure contexts respectively. The difference between these contexts is a consequence of
the different closure rules for signatures and structures; while structures may contain
references to elements of previously-defined structures, signatures may not contain such

references. These functions return the internal name of the value or type referenced.

M,[y‘?[[id]](é,N,T,E) = 7(id)
error if 1dgN
or T(id)€Vals([Z]

vaby latid(tag,£,N,7.2,C) = T(atid)
error if atid¢gN
or T(atid)gVals[Z]

valg latid.id] &tr p =
let (tag' ¢ N'.7'.2'.C') = p(atid) in 7'(id)
error if atid€dom(p)
or idgN’
or T'(id)€Vals[Z']

ty/w,‘?[[id]](g,N,T,E) = 7(id)
error if idgN
or T(id)¢Types[Z]

typeglatid](tag, 6, N,7,2,C) = 7(atid)
error if atid¢gN
or T(atid)gTypes[Z]

typegilatid.id] &tr p =
let (tag'.¢' N'.7.2'.C') = p(atid) in 7'(id)
error if atidg¢dom(p)
or idgN'
or T'(id)¢Types[Z']

Draft 25 November 1985

