
A New Initial Basis for Standard ML
(DRAFT — DO NOT DISTRIBUTE)

March 5, 1994

Contents

Preface iv

I Discussion 1

1 Introduction 3

1.1 Conventions � 4

1.2 Overview � 4

2 General 8

3 Arithmetic types 9

3.1 Integers � 9

3.2 Words � 9

3.3 Real numbers � 10

3.4 Conversions � 11

3.5 Floating-point arrays � 11

4 Text 12

5 Aggregates 13

5.1 Vectors � 13

5.2 Arrays � 13

5.3 Monomorphic aggregates � 14

6 System interface 15

6.1 Operating system interface � 15

6.2 Locale � 16

i

6.3 Directories and paths � 16

6.4 Time � 16

6.5 Misc. stuff � 16

7 Input/Output 17

8 UNIX interface 18

9 The top-level environment 19

9.1 Pre-loaded modules � 19

9.2 Top-level type, exception and value identifiers � � � � � � � � � � � � � � � � � � � 19

9.3 Infix identifiers � 19

9.4 Overloaded identifiers � 19

10 Literals 20

10.1 Character literals � 20

10.2 Numeric literals � 20

10.3 Vector literals � 21

II Manual pages 23

Array � 25

ByteArray � 27

Char � 28

CONVERT FLOAT � 29

Date � 30

Float � 32

FmtDate � 33

General � 34

INTEGER � 35

LargeInt � 37

MATH � 38

MONO ARRAY � 39

MONO VECTOR � 41

OS � 43

ii

OS.FileSys � 44

OS.Path � 46

OS.Process � 49

POSIX � 50

Posix.FileSys � 51

Posix.IO � 54

Posix.ProcEnv � 56

Posix.Process � 58

Posix.SysDB � 60

Posix.Tty � 61

PrimIO � 63

Real � 65

String � 66

Time � 68

Timer � 69

Vector � 70

Word � 71

iii

Preface

The Initial Basis defined in the Definition of Standard ML [MTH90] is probably the weakest aspect

of the definition. In addition to the expected operators on the standard types (e.g., int, real, etc.),

it defines a small, and random, collection of utility functions. This basis is woefully inadequate for

serious programming, and, as a result, each implementation of Standard ML has developed its own

extensions. This document is a proposal for a new, richer initial basis for SML, which we hope will

be adopted as a replacement for Appendices C and D of the definition.

This document is organized into two parts. The first discusses the various pieces of the proposed

basis, and gives some rationale for the design. The second part is a complete set of manual pages

for each proposed module.

Contributors

Andrew W. Appel Department of Computer Science, Princeton University
Dave Berry Harlequin
Emden R. Gansner AT&T Bell Laboratories
Lal George AT&T Bell Laboratories
Lorenz Huelsbergen AT&T Bell Laboratories
Dave MacQueen AT&T Bell Laboratories
John H. Reppy AT&T Bell Laboratories

iv

Part I

Discussion

1

Chapter 1

Introduction

NOTE: THIS IS AN INCOMPLETE DRAFT

This is a proposal for a replacement of the Standard ML initial basis.

Following the hint of Berry, Milner, et al., we are assuming that the initial basis of the Definition

[MTH90] can be entirely revamped. This is our own proposal.

Philosophy

[[Everything should belong to a particular structure (except for overloading and infix]]

Summary

Summary of our proposal:

� Capitalization convention; rules for extensions of initial basis.

� Both arbitrary and fixed-precision integers; implementations are required to implement at

least one of these.

� Both constructive reals and floating-point; implementations must implement at least one of

these. Floating-point semantics specified in more detail, and with more operators, than in the

Definition [MTH90].

� More comprehensive operators on strings.

� Mutable arrays and immutable vectors, with constant-time random-access.

� Input/output, and other operating-system interface.

3

4

1.1 Conventions

As long as we are doing everything all over again, we can revise the capitalization conventions of

the initial basis. We believe, for example, that data constructors should be capitalized to distinguish

them from variables; there seems to be wide agreement on this point. Since we are revamping the

initial basis, this is the logical time to alter the capitalization of nil, true, and false.

To write down a proposal, we had to choose a capitalization convention. We don’t wish to

debate capitalization; feel free to make an alternate proposal for capitalization, and let’s try to keep

that issue separate from the semantics.

The convention we use is:

� Alphanumeric value variables in lower-case; words separated by underscore. Examples: map,

open�in.

� Alphanumeric constructors in all caps: SOME, NONE.

� Type identifiers following the same rules as value variables.

� Signature identifiers in all caps, words separated by underscore.

� Structure and functor identifiers with initial letter capitalized.

While capitalization is a touchy subject, we strongly believe that data constructors MUST have

a different capitalization from variables. Otherwise, misspelling of a constructor in a pattern-match

can result in an error not easily caught by the compiler.

The initial basis is contained in a set of structures. Some of these structures are initially opened.

1.2 Overview

The proposal is organized in to chapters covering related collections of modules. These groupings

are:

General General purpose definitions

Arithmetic Integer and real arithmetic and mathematical functions.

Text Strings and characters

Aggregates Arrays and vectors of various kinds.

System Generic operating system interfaces.

Draft of March 5, 1994 16:28

5

Table 1.1: List of required generic signatures

Signature Description
CONVERT REAL Conversions between two real representations.
CONVERT INT Conversions between two integer representations.
CONVERT REAL INT Conversions between integer and real representations.
FLOAT Generic IEEE floating-point module interface
INTEGER Generic integer module interface.
MATH Generic math library interface.
MONO ARRAY Mutable monomorphic arrays.
MONO VECTOR Immutable monomorphic vectors.
OS Generic interface to basic operating system features
REAL Generic real number interface.

Input/Output This includes a low-level extensible I/O interface, and both text and binary I/O

streams.

In addition, there is a chapter on the top-level environment and one on literal values.

We have divided the modules into required and optional modules. Any conforming imple-

mentation of SML will provided implementations of all of the required modules. In addition, if

an implementation provides any of the services covered by the optional modules, then they shall

conform to the given interfaces. Many of the optional structures are variations on some generic

module (e.g., single and double-precision floating-point numbers); Table 1.1 gives a list of required

generic signatures. The required structures (and their signatures) are listed in Table 1.2. The key to

the three status columns is:

O is the structure partially open at top-level?

L is the structure pre-loaded in the interactive environment?

M does the structure require special compiler or run-time system support?

Table 1.3, which follows the same format, gives the list of optional structures.

Draft of March 5, 1994 16:28

6

Table 1.2: List of required structures

Status
Module Signature O L M Description
Array ARRAY Y Y Mutable polymorphic arrays.
BinIO BIN IO Y Binary input/output streams and operations.
Char CHAR Y Y Characters
CharArray MONO ARRAY Y Y Mutable arrays of characters
CharVector MONO VECTOR Y Y Immutable vectors of characters
CType CTYPE Character classification operations.
Date DATE Y Calander operations
FmtDate FMT DATE Y Formatting dates
General GENERAL Y Y Y General-purpose types, exceptions and miscella-

neous operations.
Integer INTEGER Y Y Y Default interger structure.
List LIST Y Useful utility functions on lists.
Math MATH Default math structure.
OS OS Y Y Basic operating system services.
OS�FileSys FILE SYS Y File status and directory operations
OS�Path PATH Pathname operations
OS�Process PROCESS Simple process manipulation operations
PrimIO PRIM IO Y Y Primitive input/output operations.
Real REAL Y Y Y Default real structure.
String STRING Y Y Y Strings (cf., CharVector)
StringUtil STRING UTIL ? String utility functions
TextIO TEXT IO Y Y Y Text input/output streams and operations.
Time TIME Y Representation of time values
Timer TIMER Y Timing operations
Vector VECTOR Y Y Immutable polymorphic vectors.

Draft of March 5, 1994 16:28

7

Table 1.3: List of optional structures

Status
Module Signature O L M Description
BoolArray MONO ARRAY Y Mutable arrays of booleans
BoolVector MONO VECTOR Y Immutable vectors of booleans
ByteArray BYTEARRAY Y Mutable arrays of bytes (8-bit integers).
Cvt n.a. Y Contains various arithmetic conversion

substructures.
DoubleFloat FLOAT Y Y Double-precision floating-point numbers.
DoubleFloatArray MONO ARRAY Y Mutable arrays of double-precision floating-

point numbers.
DoubleFloatVector MONO VECTOR Y Immutable vectors of double-precision floating-

point numbers.
DoubleMath MATH Double-precision floating-point math library.
ExtFloat FLOAT Y Y Extended-precision floating-point numbers.
ExtFloatArray MONO ARRAY Y Mutable arrays of extended-precision floating-

point numbers.
ExtFloatVector MONO VECTOR Y Immutable vectors of extended-precision

floating-point numbers.
ExtMath MATH Extended-precision floating-point math library.
Float FLOAT Y Y Default floating-point structure.
Intn INTEGER Y Y n-bit, fixed precision integers
LargeInt LARGE INT Y ? Arbitrary-precision integers.
POSIX POSIX Y POSIX 1003.1a binding
POSIX�FileSys POSIX FILE SYS Y File and directory operations
POSIX�IO POSIX IO Y Input/output primitives.
POSIX�Process POSIX PROC ENV Y Process primitives
POSIX�ProcEnv POSIX PROCESS Y Process environment primitives
POSIX�SysDB POSIX SYS DB Y System database primitives
POSIX�TTY POSIX TTY Y Terminal device primitives
RealArray MONO ARRAY Y Mutable arrays of the default real type
RealVector MONO VECTOR Y Immutable vectors of the default real type
SingleFloat FLOAT Y Y Single-precision floating-point numbers.
SingleFloatArray MONO ARRAY Y Mutable arrays of single-precision floating-

point numbers.
SingleFloatVector MONO VECTOR Y Immutable vectors of single-precision floating-

point numbers.
SingleMath MATH Single-precision floating-point math library.
SmallInt INTEGER Y Y Fixed-precision integers.
Word WORD Y Unsigned machine integers
Wordn WORD Y n-bit, unsigned machine integers
WordArray MONO ARRAY Y Mutable arrays of unsigned machine integers
WordVector MONO VECTOR Y Immutable vectors of unsigned machine

integers

Draft of March 5, 1994 16:28

Chapter 2

General

We include the definitions of the boolean, list, and ref types here, rather than in separate signatures.

This is because we anticipate that libraries will have more complete Bool, List, and Ref structures.

We do not include a specification of type ref because it has a “strange” equality property that

can’t be written down in a signature.

We include the datatype option because it is widely useful, and because we use it in some of

the other structures in this proposal. The datatype union is a variant on the result type proposed

by Harlequin, but with a more traditional naming scheme.

A number of common exceptions (Subscript, Size, Overflow and Div) are defined in

General. These are the standard exceptions used by various modules to signal error conditions.

We include the exception Interrupt, but we believe it is a bad idea. Allowing an exception

to be raised asynchronously, from a source other than the program itself, has a nasty semantics that

defeats both compiler optimizations and human understanding of programs. In Standard ML of

New Jersey we use a different mechanism (first-class continuations) to allow signals to be sent to

programs; see [Rep90] for a more detailed discussion. In the absence of first-class continuations

(which we are not proposing to be made Standard), implementations may (but are not required to)

raise Interrupt upon an external interrupt signal.

8

Chapter 3

Arithmetic types

The Definition provides limited support for integer and real arithmetic, but does not address the

important issue of supporting multiple represenations. This chapter presents standard interfaces for

integer and real types; the issue of literals is discussed in Chapter 10.

3.1 Integers

There are two possible implementations of integers:

� arbitrary precision (“bigints”),

� fixed precision (“smallints”).

Either one is acceptable in a Standard ML compiler, but some implementations may provide both,

and there should be a standard way to distinguish them.

We propose a signature INTEGER and two structures LargeInt and SmallInt matching the

signature. Finally, a structure Integer will be bound to either LargeInt or SmallInt in any

implementation. Implementations must provide at least one of the two integer structures.

[[Multiple fixed-precision integer representations may be provided. These will be named

Intn, where n is the number of bits of precision (e.g., Int��).]]

3.2 Words

Words are an abstraction of the underlying hardware’s machine word. The represent a sequence

of wordSize bits; an unsigned integer; and a machine-dependent encoding of the SmallInt�int

9

10

type. This encoding is likely to be 2’s complement, since essentially all current-day computers use

this representation.

The Word structure provides logical operations, both logical and arithmetic shifting, unsigned

arithmetic, and conversions between the integer type.

[[Multiple word representations may be provided. These will be named Wordn, where n

is the number of bits of precision (e.g., Word��).]]

3.3 Real numbers

Real numbers provide a fairly challenging problem of interface design. There are several possible

concrete implementations of “real” numbers:

� Constructive (infinite-precision) reals (e.g., [Vil88]);

� IEEE-754 floating point in several sizes, without infinities or NaN’s;

� IEEE-754 floating point in several sizes, with infinities and NaN’s;

� Vax, IBM 360, and other floating point representations.

Since the last of these seems to be going the way of the Dodo, we probably should concentrate on

IEEE representations.

We require that an SML system provide an implmentation of the REAL signature, which can use

infinite-precision or floating-point representations. The implementation may, optionally, provide

one or more implementations of the FLOAT signature providing various different precisions. These

would be named:

ShortFloat Short precision (less than 32-bit) floating-point numbers represented as unboxed

values to save time and space at the expense of accuracy.

SingleFloat Single precision (32-bit) floating point.

DoubleFloat Double precision (64-bit) floating point.

ExtendedFloat Higher precision (96 or 128-bit) floating point.

One of these (usually DoubleFloat) would also be bound to Float.

The standard mathematical functions (e.g., sin, sqrt, etc.) are found in the Math structure. For

each different representation of reals (e.g., SingleFloat), there is an instance of the Math structure

(e.g., SingleMath). Thus, each representation of reals has its own mathematical functions.

Draft of March 5, 1994 16:28

11

3.4 Conversions

With various different representations available, there must be a way to convert between them.

There are three different kinds of conversions that must be provided: conversions between integer

and real representations, conversions between two different integer representations, and conversions

between two different floating-point representations.

[[There will be a single structure Cvt that contains all of the conversion structures as

sub-structures.]]

For each pair of float structuresFFloat� GFloat (e.g.,SingleFloat,DoubleFloat,ExtendedFloat),

in the system, such thatFFloat�precision� GFloat�precision, there must also be a structure

ConvertFG matching the signature CONVERTFLOAT.

[[What is the behavior of the conversions between the real type of a structure and the

default real type? Since the relative precision is not known, this would have to have some

default behavior (e.g., trunc) when default the real type has more information than the

target.]]

3.5 Floating-point arrays

For each floating-point structure SFloat, there may be a monomorphic array struture called

SFloatArray that matches the MONO�ARRAY signature.

Draft of March 5, 1994 16:28

Chapter 4

Text

This chapter deals with characters and strings. The old basis uses the int type to represent single

characters. This is unsatisfactory for several reasons:

� no symbolic names for pattern matching single characters

� character to string conversions require unecessary range checks

We propose that the single string type provided by the Definition be replaced with two types:

string and char. Where strings are immutable sequences of characters.

[[we need to think about Unicode]]

[[There should be aCharVector structure withCharVector�vectormatchingString�string.

We may want to add tabulate to String]]

12

Chapter 5

Aggregates

This chapter describes various aggregate types that must be primitive in order to guarantee constant

time updating and indexing. Implementations are required to provide polymorphic array and vector

structures, and signatures for monomorphic arrays and vectors. The polymorphic and monomorphic

versions of these types have the same basic operations.

Both vectors and arrays are indexed from �; each vector or array structures defines the integer

variable maxlen, which defines the length of the longest allowed vector or array of that element

type. We require that the default integer representation have sufficient precision to index every

element of the largest possible array or vector.

5.1 Vectors

Vectors are immutable one-dimensional arrays of elements. Each vector structure provides two

different was to create a vector: vector takes a list of elements and makes a vector out of it, and

tabulate takes a function from integers to vector elements, which it uses to initialize the vector

elements. Given a vector, one can get its length (using length), get an element (using sub), or

extract a sub-vector (using extract).

5.2 Arrays

Arrays are mutable one-dimensional arrays of elements. They have the same basic operations as

vectors, with a couple of minor differences and extra operations. The array operation creates an

array initialized to a given value, while the arrayoflist operation is used to make an array from

a list. An array value can be modified using the update operation, which replaces a given element

with another value. Lastly, the extract operation returns a vector of the corresponding vector type.

13

14

5.3 Monomorphic aggregates

An implementation may choose to provide various implementations of the MONO�ARRAY and

MONO�VECTOR signatures. If an implementation provides either a monomorphic array or vector

structure for a particular element type, then it should provide both structures.1 The main reason for

providing monomorphic vectors and arrays is that they allow more compact representations than

the polymorphic versions (e.g., a BoolVector implementation might use one bit per element).

Character vectors

The CharVector structure defines a view of the String structure that matches to the MONO�VECTOR

signature. The type CharVector�vector is the same as String�string.

Bytearrays

The ByteArray structure does not fit the general framework described above. It is included for

reasons of both compatibility and usefulness.

1Since the MONO ARRAY structure refers to the corresponding vector type, one cannot have a monomorphic array
structure without the vector structure.

Draft of March 5, 1994 16:28

Chapter 6

System interface

The system interface structures provide access to the underlying operating system features, and to

other run-time facilities.

6.1 Operating system interface

We assume a structure OS that contains all of the operating system related interfaces. At a minimum,

this structure must match the OS signature.

Input/Output

Let’s discuss the IO structure separately. However, we will propose that the Io exception be revised

to take a more structured argument:

exception Io of �

ml�op � string�

filename � string�

os�op � string�

reason � SysError�syserror

�

ml op is the name of the Standard ML I/O function reporting the exception, e.g. open�in.

filename is the name of the stream in the file system. Thus, if output�open�out �fn�� s�

fails, the name fn will be reported even though it is not directly the argument of output.

os op is the name of the operating system call that failed (e.g., open).

reason is the failure diagnostic reported by the operating system.

15

16

6.2 Locale

Given that SML is an international language, we should support mechanisms for parameterizing the

system by locale. For example, ANSI C allows string collating, formating of monetary and numeric

values, and formatting of dates to be locale-specific.

At this time, we do not have a design proposal, but there seem to be two basic approaches: we

can define an abstract locale type that is passed as an explicit argument to those functions that

are locale-specific; or we can have a global notion of the current locale, with functions to get and

change it. C does the latter, but the former is in keeping with the functional nature of SML.

6.3 Directories and paths

The FileSys structure provides operations for navigating the directory hierarchy, for listing the

files in a directory, and some operations on files. The Path structure provides an abstract, system

independent, view of pathnames.

6.4 Time

We propose three structures to support access to timing and dates: Time, Date and Timer. Time

values are represented by the following concrete datatype:

datatype time � TIME of �sec � int� usec � int�

We may want to consider going to nanoseconds for the second component, as the Draft POSIX

Real-time standard does this.

Time values are used both to represent intervals of time, and to represent points in time, which

are really just intervals starting at some common point (e.g., since 00:00, January 1, 1970 GMT).

6.5 Misc. stuff

val implementation � string

val versionName � string

Draft of March 5, 1994 16:28

Chapter 7

Input/Output

We propose that support for I/O be broken up into three levels: at the lowest level will be OS

dependent operations on files and other I/O devices (e.g., sockets). Above this will be the PrimIO

structure, which defines the SML I/O streams in terms of lower-level abstract readers and writers.

Combining OS dependent implementations of readers and writers with the PrimIO structure gives

the traditional SML I/O interface.

The reader and writer types are parameterized; the idea is that this parameter might specify

system dependent information (e.g., the file descriptor for UNIX readers and writers).

[[We should make a distinction between text streams and binary streams.]]

[[Use a "offset" type for seek marks.]]

17

Chapter 8

UNIX interface

Since a large fraction of SML users work on UNIX systems, it is important to standardize access to

UNIX system calls. This interface is based on the POSIX standard (IEEE standard 1003.1) [POS90],

with some extensions from the 1003.1a version, which is currently being voted upon.

The interface consists of the POSIX structure, which is divided into six sub-structures, along the

lines of the chapters of the POSIX standard. The sub-structures are:

Process operations for creating and managing processes.

ProcEnv operations on the process environment (e.g., process IDs, grocess groups).

FileSys operations on the file system.

PosixIO primitive I/O operations.

Device operations of terminal devices.

[[should this be called TermIO??]]

SysDB operations on the system data-base (e.g., passwords).

18

Chapter 9

The top-level environment

This chapter describes the required top-level environment, which consists of: top-level identifiers,

both the pre-loaded required modules and identifiers made available without qualification; infix

identifiers; and overloading.

9.1 Pre-loaded modules

9.2 Top-level type, exception and value identifiers

9.3 Infix identifiers

The top-level environment has the following infix identifiers:

infix � � 	 div mod quot rem

infix
 � �

infixr � �� �

infix � � �� � �� � ��

infix � �� o

infix � before

9.4 Overloaded identifiers

19

Chapter 10

Literals

The new character type and the possibility of multiple implementations of the numeric types requires

addressing the issue of literals.

10.1 Character literals

With the new character type, there should be a notation for character literals. We propose the

notation

��c�

where “c” is any legal single character string. This notation has the advantage that existing legal

SML code will not be affected.

If Unicode characters are supported, then we will need additional syntax for them. We propose

that the escape sequence “	�n)”, where n is a non-negative integer literal, be recognized. Also, we

will need syntax for Unicode strings.

10.2 Numeric literals

With the possibility of multiple representations of the numeric types in a given implementation

(e.g., SmallInt and LargeInt), there needs to be a way to distinguish the different literals. There

are a number of possible approaches to this problem:

� Many languages (e.g.,C and Modula-3) use different notation for literals of different precision.

For example, the LargeInt literal � might be written �L.

20

21

� We could make literals have the default type unless constrained to some other type. Thus, the

top-level binding
val x � �

would give x the type Integer�int, while
val x � �� � LargeInt�int�

would give x the type LargeInt�int. If the default integer representation is SmallInt�int,

then the following would result in a type error:
val x � �� � LargeInt�int�

val y � x � �

since x has type LargeInt�int and
 has type SmallInt�int (we are assuming that � is

overloaded here).

� Literals might be viewed as overloaded symbols that default to the default representation.

Thus, the top-level binding
val x � �

would give x the type Integer�int, while
val x � LargeInt����� ��

would give x the type LargeInt�int. Unlike under the previous proposal, the following

code would typecheck:
val x � �� � LargeInt�int�

val y � x � �

assuming that � is overloaded.

We have decided on the last of these, because we think it is the least surprising to the user.

In addition, we propose adding notation for hexidecimal integer constants (as is already done in

the SML/NJ compiler).

10.3 Vector literals

A related issue is the question of syntax for vectors in expressions and patterns. The SML/NJ

compiler supports a modified version of the list notation for vector literals. The form is:

�� ��� �

and can be used in both expressions and patterns.

Draft of March 5, 1994 16:28

22

Draft of March 5, 1994 16:28

Part II

Manual pages

23

ARRAY(BASIS) Initial Basis ARRAY(BASIS)

NAME

Array — polymorphic mutable arrays

SYNOPSIS

signature ARRAY

structure Array : ARRAY

SIGNATURE

eqtype �a array

eqtype �a vector

val maxlen � int

val array � �int � ��a� �� ��a array

val tabulate � �int � �int �� ��a�� �� ��a array

val arrayoflist � ��a list �� ��a array

val array� � �a array

val length � �a array �� int

val sub � ��a array � int� �� �a

val update � ��a array � int � �a� �� unit

val extract � ��a array � int � int� �� �a vector

DESCRIPTION

The Array structure provides one-dimensional, zero-based, updateable arrays.

maxlen

is the maximum length of arrays supported by the implementation.

array �n� v�

creates an n-element, zero-based array with each element initialized to v. Raises

Size if n � 0 or if n � maxlen

tabulate �n� f�

create an n element array whose ith element is initialized to f�i�.

arrayoflist l

create an array whose elements are initialized to the elements of l.

array�

is the unique zero-length array.

length arr

the number of elements in the array arr.

Last change: March 31, 1993 25

ARRAY(BASIS) Initial Basis ARRAY(BASIS)

sub �arr� i�

extracts (subscript) the ith element of array arr. Raises Subscript if i � 0 or

i � length�a�.

update �arr� i� v�

replaces the ith element of arr by the value v. Raises Subscript if i � 0 or

i � length�a�.

extract �a� i� n�

extracts the elements a�i � � � i�n�1� as a vector of length n. This raises Subscript

if either i, or i� n� 1 is out of range.

Note that type � array is an equality type even if � is not. Thus, the eqtype specification

in the signature ARRAY does not quite capture the equality semantics of arrays. All zero-

length arrays are equal to each other. Nonzero-length arrays a and b, created by different

calls to array, are always unequal, even if their elements are equal.

SEE ALSO

Vector(BASIS)

26 Last change: March 31, 1993

BYTEARRAY(BASIS) Initial Basis BYTEARRAY(BASIS)

NAME

ByteArray — mutable arrays of 8-bit unsigned integers

SYNOPSIS

signature BYTE ARRAY

structure ByteArray : BYTE ARRAY

SIGNATURE

eqtype bytearray

exception Range

val maxlen � int

val array � �int � int� �� bytearray

val arrayoflist � int list �� bytearray

val tabulate � �int � �int �� int�� �� bytearray

val length � bytearray �� int

val extract � �bytearray � int � int� �� string �� �� ��

val sub � �bytearray � int �� int

val update � �bytearray � int � int� �� unit

DESCRIPTION

SEE ALSO

String(BASIS)

Last change: February 10, 1994 27

CHAR(BASIS) Initial Basis CHAR(BASIS)

NAME

Char — character type and operations

SYNOPSIS

signature CHAR

structure Char : CHAR

open Char

SIGNATURE

eqtype char

exception Chr

val chr � int �� char

val ord � chr �� int

val maxCharOrd � int

val � � �char � char� �� bool

val �� � �char � char� �� bool

val � � �char � char� �� bool

val �� � �char � char� �� bool

DESCRIPTION

The character type is a dense enumeration running from 0 to maxCharOrd, which is an

implementation dependent value. For example, an ASCII-based implementation might use

��� for maxCharOrd. The mapping between characters and integers is provided by the

following two operators:

chr i

returns the ith character. If i � 0 or maxCharOrd � i , then the exception Chr is

raised.

ord c

returns the integer representation of the character. It should be the case that

chr�ord c� � c, for all characters c.

The relational operators on characters are defined by:

fun �op f� �c�� c�� � �op f��ord c�� ord c��

where f is one of
,
�, � or ��.

SEE ALSO

String(BASIS)

28 Last change: March 31, 1993

ConvertFloat(BASIS) Initial Basis ConvertFloat(BASIS)

NAME

CONVERT FLOAT — signature of floating-point conversions

SYNOPSIS

signature CONVERT FLOAT

SIGNATURE

eqtype small�real

eqtype large�real

extend � small�real �� large�real

round � large�real �� small�real

trunc � large�real �� small�real

floor � large�real �� small�real

ceil � large�real �� small�real

DESCRIPTION

SEE ALSO

FLOAT(BASIS)

Last change: November 17, 1993 29

DATE(BASIS) Initial Basis DATE(BASIS)

NAME

Date — interface to local time and date information

SYNOPSIS

signature DATE

structure Date : DATE

SIGNATURE

datatype weekday � Mon � Tue � Wed � Thu � Fri � Sat � Sun

datatype month

� Jan � Feb � Mar � Apr � May � Jun

� Jul � Aug � Sep � Oct � Nov � Dec

datatype date � DATE of �

year � int�

month � month�

day � int� �� ���� ��

hour � int� �� ���� ��

minute � int� �� ��
� ��

second � int� �� ��
� ��

offset � int�

zone � string�

wday � weekday

�

type timezone

val localTZ � timezone

val univTZ � timezone

exception Date

val timeToDate � �Time�time � timezone� �� date

val dateToTime � date �� Time�time

val localTime � Time�time �� date

DESCRIPTION

The offset field in the date type is the difference in seconds between the date and

Universal Coordinated Time (UTC). This reflects both the difference in time zone, and

daylight savings time.

A timezone is an abstract representation of a time zone. The variables localTZ and

univTZ represent the local and UTC time zones, respectively. The function timeToDate

converts a time value to a date, as observed in the given time zone. The function

30 Last change: January 28, 1994

DATE(BASIS) Initial Basis DATE(BASIS)

dateToTime does the conversion the other way, using the offset field to convert to

UTC. These functions raise the Date exception, if the arguments are ill-formed. The

localTime function does the timeToDate conversion, using localTZ as the time zone.

SEE ALSO

FmtDate(BASIS), Time(BASIS)

Last change: January 28, 1994 31

FLOAT(BASIS) Initial Basis FLOAT(BASIS)

NAME

Float — floating-point arithmetic

SYNOPSIS

SIGNATURE

include REAL

val radix � Integer�int �� � for IEEE� Vax �
 for IBM ��

val precision � Integer�int

�� the number of digits �each ���radix��� in mantissa ��

val logb � real �� Integer�int

�� takes log to the base �radix�� rounding towards negative infinity

� it is a fancy name for �extract exponent�

��

val scalb � real � Integer�int �� real

�� scalb�x�n� � x�radix
n ��

val nextAfter � real � real �� real

�� nextAfter�x� y� returns the next representable real after x in the

� direction of y� If x � y� then it returns x�

��

val maxFinite � real �� maximum finite number ��

val minPos � real �� minimum non�zero positive number ��

val minNormalPos � real �� minimum non�zero normalized number ��

DESCRIPTION

[[We should have operations to decompose float values]]

SEE ALSO

Real(BASIS), Math(BASIS)

32 Last change: November 17, 1993

FMT-DATE(BASIS) Initial Basis FMT-DATE(BASIS)

NAME

FmtDate — Formatting of dates

SYNOPSIS

signature FMT DATE

structure FmtDate : FMT DATE

SIGNATURE

val dateToStr � Date�date �� string

val formatDate � string �� Date�date �� string

val scanDate � string �� �string � int� �� �Date�date � int�

DESCRIPTION

The dateToStr function converts a date value to a 25 character string of the form:

�Sun Sep
� �
������
���	n�

The formatDate and scanDate functions provide the function of the ANSI C routines

strftime and strptime.

SEE ALSO

Date(BASIS), Locale(BASIS)

Last change: January 28, 1994 33

GENERAL(BASIS) Initial Basis GENERAL(BASIS)

NAME

General — basic definitions used in the pervasive environment

SYNOPSIS

signature GENERAL

structure General : GENERAL

open General

SIGNATURE

type exn

eqtype unit

exception Bind

exception Match

exception Interrupt �� included for compatibility ��

exception Subscript

exception Size

exception Overflow

exception Div

exception Fail of string

datatype bool � true � false

val not � bool �� bool

datatype �a option � NONE � SOME of �a

datatype ��a� �b� union � INL of �a � INR of �b

datatype �a list � nil � �� of ��a � �a list�

val ref � ��a �� ��a ref

val ! � �a ref �� �a

val �� � �a ref � �a �� unit

val o � ���b �� �c� � ��a �� �b�� �� ��a �� �c�

val before � ��a � �b� �� �b

DESCRIPTION

SEE ALSO

34 Last change: January 31, 1994

INTEGER(BASIS) Initial Basis INTEGER(BASIS)

NAME

INTEGER — Generic signature for integer arithmetic types and operations

SYNOPSIS

signature INTEGER

SIGNATURE

eqtype int

exception Div

exception Overflow

�� infix � div mod � ��

�� infix
 � � ��

�� infix � � � �� �� ��

val precision � int option

val minint � int option

val maxint � int option

val " � int �� int

val � � int � int �� int

val div � int � int �� int

val mod � int � int �� int

val quot � int � int �� int

val rem � int � int �� int

val � � int � int �� int

val � � int � int �� int

val � � int � int �� bool

val �� � int � int �� bool

val � � int � int �� bool

val �� � int � int �� bool

val abs � int �� int

val min � �int � int� �� int

val max � �int � int� �� int

val toDefault � int �� Integer�int

val fromDefault � Integer�int �� int

val floor � Real�real �� int �� rounds toward negative infinity ��

val ceil � Real�real �� int �� rounds toward positive infinity ��

val trunc � Real�real �� int �� rounds toward zero ��

val round � Real�real �� int �� rounds toward nearest� ties��nearest even ��

val real � int �� Real�real

DESCRIPTION

The values precision, minint, and maxint are NONE in the LargeInt structure. In the

Last change: March 5, 1994 35

INTEGER(BASIS) Initial Basis INTEGER(BASIS)

SmallInt structure, precision is the number of bits used to represent an integer; minint

is the most negative integer, and maxint is the most positive integer. In a two’s complement

implementation, it should be the case that:

2precision�1 � 1 � maxint

�2precision�1 � minint �

The operators �, �, �, �, and abs stand for integer negation, multiplication, addition, sub-

traction, and absolute value. The inequality comparison operators have the usual meaning.

The equality operators are not listed explicitly in the signature, but note that int is an

eqtype.

The operatorsdiv andmod are as in the Definition (i.e., div rounds toward negative infinity).

But we also include operators quot and rem, which have the standard hardware semantics

(i.e., round towards zero). More precisely, the following identities hold:

i div d � q

i mod d � r�

d� q � r � i

0 � r � d or d � r � 0

i quot d � q�

i rem d � r��

d� q� � r� � i

0 � d� q� � i or i � d� q� � 0

0 � jrj � jdj

The operators div, mod, quot, and rem raise Div if their second argument is zero. If the

second argument is nonzero but the result is too large to be representable, Overflow is

raised.

SEE ALSO

LargeInt(BASIS)

36 Last change: March 5, 1994

LARGEINT(BASIS) Initial Basis LARGEINT(BASIS)

NAME

LargeInt — Arbitrary-precision integer structure

SYNOPSIS

signature LARGE INT

structure LargeInt : LARGE INT

SIGNATURE

include INTEGER

val divmod � �int � int� �� �int � int�

val quotrem � �int � int� �� �int � int�

val exp � �int � Integer�int� �� int

val log� � int �� Integer�int

DESCRIPTION

The LargeInt structure is one of the possible implementations of the INTEGER interface.

In addition to the INTEGER operations, it provides some operations useful for programming

with bignums.

The functions divmod and quotrem are defined by:

fun divmod �a� b� � �a div b� a mod b�

fun quotrem �a� b� � �a quot b� a rem b�

but are more efficient that doing both operations individually. These functions raise Div, if

their second argument is zero. The function exp raises its first argument to the power of its

second argument (which is a default integer). The function log� returns the log base-2 of

its argument as a default integer.

SEE ALSO

INTEGER(BASIS)

Last change: March 5, 1994 37

MATH(BASIS) Initial Basis MATH(BASIS)

NAME

MATH — signature of mathematical library functions

SYNOPSIS

signature MATH

SIGNATURE

type real

exception Sqrt

exception Ln

val sqrt � real �� real

val sin � real �� real

val cos � real �� real

val arctan � real �� real

val atan� � �real � real� �� real

val exp � real �� real

val ln � real �� real

DESCRIPTION

The Math structure is a substructure of the structures matching the REAL signature. The

square root, exponential, and trigonometric functions are the same as those in the Definition;

except that we have also include the atan� function with the following properties:

tan�atan2�x� y�� � y�x� for x �� 0

jatan2�0� y�j � ��2

�2� � atan2�x� y� � �

sign�cos�atan2�x� y�� � sign�x�

sign�sin�atan2�x� y�� � sign�y�

[[ANSI C also defines tan, asin, acos, sinh, cosh, tanh, log
�, pow, fabs, ldexp,

frexp, modf, and fmod. Also constants pi and e might be useful.]]

SEE ALSO

Real(BASIS), Float(BASIS)

38 Last change: February 9, 1994

MONO-ARRAY(BASIS) Initial Basis MONO-ARRAY(BASIS)

NAME

MONO ARRAY — generic signature of monomorphic array structures

SYNOPSIS

signature MONO ARRAY

SIGNATURE

eqtype array

type elem

type vector

val maxlen � int

val array � �int � elem� �� array

val tabulate � �int � �int �� elem�� �� array

val arrayoflist � elem list �� array

val length � array �� int

val sub � �array � int� �� elem

val update � �array � int � elem� �� unit

val extract � �array � int � int� �� vector

DESCRIPTION

This is the generic signature of monomorphic arrays (e.g., ByteArray). The type array is

the monomorphic array type, which is indexed from �. The type elem is the element type,

and the type vector is the type of the corresponding immutable vectors of the elem type.

The other members of the structure are:

maxlen

is the maximum length supported for arrays of this type.

array �n� v�

creates an array of n elements intialized to v. This raises the Size exception, if n

is either too large (� maxlen) or negative.

tabulate �n� f�

creates an array of n elements, where the ith element is initialized to f�i�. The

function f is called in increasing order of i. This raises the Size exception, if n is

either too large (� maxlen) or negative.

arrayoflist l

creates an array from the list of elements l. This raises theSize exception, if the l has

more than maxlen elements. The zero-length array created by arrayoflist ��

is unique.

Last change: February 9, 1994 39

MONO-ARRAY(BASIS) Initial Basis MONO-ARRAY(BASIS)

length arr

returns the length of the array arr.

sub �arr� i�

returns the ith element of arr. The exception Subscript is raised if i is out of

bounds.

update �arr� i� v�

replaces the ith element of arr with v. The exception Subscript is raised if i is

out of bounds.

extract �arr� i� n�

extracts a vector of length n from the array arr, starting with the ith element. The

exception Subscript is raised if i or i� �n� 1� is out of bounds.

SEE ALSO

MONO VECTOR(BASIS)

40 Last change: February 9, 1994

MONO-VECTOR(BASIS) Initial Basis MONO-VECTOR(BASIS)

NAME

MONO VECTOR — generic signature of monomorphic vector structures

SYNOPSIS

signature MONO VECTOR

SIGNATURE

type vector

type elem

val maxlen � int

val vector � elem list �� vector

val tabulate � �int � �int �� elem�� �� vector

val length � vector �� int

val sub � �vector � int� �� elem

val extract � �vector � int � int� �� vector

DESCRIPTION

This is the generic signature of monomorphic vectors (e.g., CharVector). The type vector

is the monomorphic vector type, which is indexed from �. The type elem is the element

type, and the type vector is the type of the corresponding immutable vectors of the elem

type. The other members of the structure are:

maxlen

is the maximum length supported for vectors of this type.

vector l

creates an vector from the list of elements l. This raises the Size exception, if the

l has more than maxlen elements.

tabulate �n� f�

creates an vector of n elements, where the ith element is initialized to f�i�. The

function f is called in increasing order of i. This raises the Size exception, if n is

either too large (� maxlen) or negative.

length vec

returns the length of the vector vec.

sub �vec� i�

returns the ith element of vec. The exception Subscript is raised if i is out of

bounds.

extract �vec� i� n�

extracts a vector of length n from the vector vec, starting with the ith element. The

exception Subscript is raised if i or i� �n� 1� is out of bounds.

Last change: February 9, 1994 41

MONO-VECTOR(BASIS) Initial Basis MONO-VECTOR(BASIS)

SEE ALSO

MONO ARRAY(BASIS), Vector(BASIS)

42 Last change: February 9, 1994

OS(BASIS) Initial Basis OS(BASIS)

NAME

OS — Generic interface to operating system

SYNOPSIS

signature OS

structure OS : OS

SIGNATURE

val osInfo � unit �� �

archFamily � string�

archName � string�

osName � string�

osVersion � string

�

type syserror

val errorName � syserror �� string

exception SysErr of �

ml�op � string�

os�op � string�

reason � syserror

�

structure FileSys � FILE�SYS

structure Path � PATH

structure Process � PROCESS

DESCRIPTION

The function osInfo returns information about the host system. The field archFamily

specifies the processor family; possible values include: alpha, arm, ��k, vax, mips,

sparc, power, x��, and interp. The value interp is reserved for interpreter based

implementations. The field archName specifies the specific architecture; values include:

mipsel (little-endian MIPS-1), mipseb (big-endian MIPS-1), mipsel�� (little-endian

MIPS-2), sparc�� (SPARC version 7), etc. The osName field gives the name of the

underlying operating system; values include: bsd, irix, sunos, solaris (version 2 and

above), os�, macos, and windows.

The type syserror represents a system dependent error code; the function errorName

returns a useful error message from a syserror.

The exception SysErr is raised by calls to low-level operating system routines.

SEE ALSO

OS.FileSys(BASIS), OS.Path(BASIS), OS.Process(BASIS)

Last change: February 3, 1994 43

OS.FILESYS(BASIS) Initial Basis OS.FILESYS(BASIS)

NAME

OS.FileSys — system independent file-system operations

SYNOPSIS

signature FILE�SYS

structure OS � OS �

struct

���

structure FileSys � FILE�SYS

���

end

SIGNATURE

type dirstream

val open�dir � string �� dirstream

val read�dir � dirstream �� string

val rewind�dir � dirstream �� unit

val close�dir � dirstream �� unit

val chdir � string �� unit

val getdir � unit �� string

val make�dir � string �� unit

val remove�dir � string �� unit

val is�dir � string �� bool

val modtime � string �� Time�time

val remove � string �� unit

val rename � �old � string� new � string� �� unit

datatype access � A�READ � A�WRITE � A�EXEC

val access � �string � access list� �� bool

DESCRIPTION

The FileSys structure provides a limited set of operations on directories and files, which

are portable across operating systems.

Directories are viewed as a sequence of file name in some system dependent order. The

dirstream type represents this abstraction; the operations are:

open dir path

opens the specified directory stream.

read dir ds

returns the next file name in the stream ds. If all of the file names in ds have been

read, then the empty string is returned.

44 Last change: March 6, 1994

OS.FILESYS(BASIS) Initial Basis OS.FILESYS(BASIS)

rewind dir ds

rewinds the stream ds to the beginning.

close dir ds

closes the stream ds.

In addition to directory streams, the Directory structure provides operations for navigating

the directory hierarchy:

chdir path

changes the current working directory to the specified path.

getdir path

returns the current working directory.

make dir path

creates the specified directory.

remove dir path

removes the specified directory.

isdir path]

returns true if path names a directory. It raises the SysErr exception if path is

invalid or does not exist.

Several operations are provided on other files:

modtime path

remove path

rename fnew, oldg

access (path, acl

tests the access permissions associated with the named file.

SEE ALSO

OS(BASIS),Path(BASIS)

Last change: March 6, 1994 45

OS.PATH(BASIS) Initial Basis OS.PATH(BASIS)

NAME

OS.Path — System independent interface to pathnames

SYNOPSIS

signature PATH

structure OS � OS �

struct

���

structure Path � PATH

���

end

SIGNATURE

datatype path�root � REL � ABS of string

exception Path

val explodePath � string

�� �root � path�root� arcs � string list� last � string�

val implodePath � �root � path�root� arcs � string list� last � string�

�� string

val parent � string

val current � string

val isValidPath � string �� bool

val isValidRoot � path�root �� bool

val isValidArc � string �� bool

val isAbsolute � string �� bool

val isRelative � string �� bool

val getParent � string �� string

val concatPath � �string � string� �� string

val mkAbsolute � �string � string� �� string

val mkRelative � �string � string� �� string

val mkCanonical � string �� string

datatype path�ext � NOEXT � EXT of string

val makePath � �prefix � string� base � string� ext � path�ext� �� string

val splitPath � string �� �prefix � string� base � string� ext � path�ext�

val root � string �� string option

val prefix � string �� string

val last � string �� string

val base � string �� string

val lastBase � string �� string

val lastExt � string �� path�ext

46 Last change: March 6, 1994

OS.PATH(BASIS) Initial Basis OS.PATH(BASIS)

DESCRIPTION

This is a system independent module for manipulating strings that represent paths in the

directory structure. This structure supports two views of paths. The first is directory

oriented, and would typically be used for file-system navigation and searches. The second

view focuses on the named file, and would typically be used by applications that generate

output file names from input files.

In the first view, a path is abstractly viewed as a sequence of arcs, where the first arc specifies

the root of the path, which is represented by the path�root datatype. If the root is REL,

then the path is said to be relative; otherwise it is said to be absolute, and the argument

to ABS specifies the root (e.g., ��� on UNIX file systems). The other arcs in the path are

represented by strings. The various operations on paths are defined as follows:

explodePath p

decomposes the path into a list of arcs. For relative paths, the root will be REL. If

the path is valid, then the roots and arcs will be.

implodePath froot� arcs� lastg

composes a path from a root, list of arcs and last arc. If the root and arcs are valid,

then the path will be valid.

parent

is the special arc name that designates the parent directory (e.g., in UNIX this is

����).

current

is the special arc name that designates the current directory (e.g., in UNIX this is

���).

isValidPath p

returns true, if the pathname p is a valid pathname for the host operating system.

isValidRoot arc

returns true, if the arc name arc is a valid root directory name for the host operating

system.

isValidArc arc

returns true, if the arc name arc is a valid arc name for the host operating system.

isAbsolute p

returns true, if the pathname p is absolute.

isRelative p

returns true, if the pathname p is relative.

Last change: March 6, 1994 47

OS.PATH(BASIS) Initial Basis OS.PATH(BASIS)

getParent p

returns the path of the parent of p; if p does not have a parent, then the exception

Path is raised.

concatPath �p1� p2�

returns the path formed by concatenating p1 and p2. If p2 is not a relative path,

then the exception Path is raised.

mkAbsolute �p1� p2�

returns p1 if it is absolute; otherwise, it returns an absolute path that is formed by

concatenating p2 and p1 (i.e., the absolute p corresponding to p1 with respect to

p2). If p2 is not absolute, and even if p1 is, the exception Path is raised.

mkRelative �p1� p2�

returns path1 if it is not absolute; otherwise it returns an equivalent path relative to

path2. If path2 is not absolute, and even if path1 is, the exception Path is raised.

mkCanonical p

returns a canonical version of the path p. Redundant occurrences of the current arc

and redundant arc separators are removed. Occurrences of the parent arc are folded

in, if possible, or else moved to the front of the path. The canonical path will never

be the empty string; any empty path is converted to the current directory path. If

the path has a trailing arc separator (i.e., the last arc is empty), it is preserved.

The second view of paths divides a path into prefix, base, and extension parts. The prefix

specifies the directory that holds the file, and the base and extension comprise the file name.

makePath fprefix� base� extg

creates a path from a prefix, base and extension.

splitPath p

splits a pathname into prefix, base and extension.

root p

returns the root of p, if it is absolute, or else NONE.

prefix p

returns the prefix of p (everything upto the last arc name).

last p

returns the last arc name in p; if p consists of only a root arc, then it returns the

empty string.

base p

returns the pathname p with itslast arc name replaced by its base.

48 Last change: March 6, 1994

OS.PATH(BASIS) Initial Basis OS.PATH(BASIS)

lastBase p

is equivalent to �base�splitPath p�.

lastExt p

is equivalent to �ext�splitPath p�.

SEE ALSO

OS(BASIS)

Last change: March 6, 1994 49

OS.PROCESS(BASIS) Initial Basis OS.PROCESS(BASIS)

NAME

OS.Process — System independent interface to process primitives

SYNOPSIS

signature PROCESS

structure OS � OS �

struct

���

structure Process � PROCESS

���

end

SIGNATURE

val exit � int �� �a

val system � string �� syserror option

DESCRIPTION

SEE ALSO

OS(BASIS)

50 Last change: March 6, 1994

POSIX(BASIS) Initial Basis POSIX(BASIS)

NAME

POSIX — POSIX 1003.1 binding

SYNOPSIS

signature POSIX

structure POSIX � POSIX

SIGNATURE

datatype syserror

� E�BIG � EACCES � EAGAIN � EBADF � EBUSY � ECHILD � EDEADLK

� EDOM � EEXIST � EFAULT � EFBIG � EINTR � EINVAL � EIO

� EISDIR � EMFILE � EMLINK � ENAMETOOLONG � ENFILE � ENODEV

� ENOENT � ENOEXEC � ENOLOCK � ENOMEM � ENOSPC � ENOSYS

� ENOTDIR � ENOTEMPTY � ENOTTY � ENXIO � EPERM � EPIPE

� ERANGE � EROFS � ESPIPE � ESRCH � EXDEV

� EOTHER of int

val errorName � syserror �� string

structure Process � POSIX�PROCESS

structure ProcEnv � POSIX�PROC�ENV

structure FileSys � POSIX�FILE�SYS

structure IO � POSIX�IO

structure TTY � POSIX�TTY

structure SysDB � POSIX�SYS�DB

sharing type Process�pid � ProcEnv�pid � TTY�pid

and type FileSys�offset � PrimIO�offset

and type ProcEnv�file�desc � FileSys�file�desc

� PrimIO�file�desc � TTY�file�desc

and type ProcEnv�uid � FileSys�uid � SysDB�uid

and type ProcEnv�gid � FileSys�gid � SysDB�gid

DESCRIPTION

The POSIX structure defines an SML binding for the POSIX 1003.1-1990 standard (with

some 1003.1a extensions). The datatype syserror represents the POSIX system error

codes. The constructor EOTHER is for error codes not covered by the POSIX standard. The

function errorName maps an error code to an error message (e.g., errorName�ENOENT�

might return the string �No such file or directory�). The organization of the POSIX

structure follows that of the standard; each substructure corresponds to a different section

in standard.

SEE ALSO

POSIX.Process(BASIS), POSIX.ProcEnv(BASIS), POSIX.FileSys(BASIS), POSIX.PrimIO(BASIS),

POSIX.TTY(BASIS), POSIX.SysDB(BASIS)

Last change: February 2, 1994 51

FILE-SYS(BASIS) Initial Basis FILE-SYS(BASIS)

NAME

Posix.FileSys — operations on the file system

SYNOPSIS

signature POSIX�FILE�SYS

structure POSIX � POSIX �

struct

���

structure FileSys � POSIX�FILE�SYS

���

end

SIGNATURE

eqtype uid

eqtype gid

eqtype file�desc

type dirstream

val openDir � string �� dirstream

val readDir � dirstream �� string

val rewindDir � dirstream �� unit

val closeDir � dirstream �� unit

val chdir � string �� unit

val getcwd � unit �� string

val stdin � file�desc

val stdout � file�desc

val stderr � file�desc

eqtype mode

datatype open�mode � O�RDONLY � O�WRONLY � O�RDWR

datatype open�flag

� O�APPEND

� O�CREAT of mode

� O�EXCL

� O�NOCTTY

� O�NONBLOCK

� O�TRUNC

val openf � �string � open�mode � open�flag list� �� file�desc

val umask � mode �� mode

val link � �old � string� new � string� �� unit

val mkdir � string � mode �� unit

val mkfifo � string � mode �� unit

52 Last change: February 2, 1994

FILE-SYS(BASIS) Initial Basis FILE-SYS(BASIS)

val unlink � string �� unit

val rmdir � string �� unit

val rename � �old � string� new � string� �� unit

val symlink � �old � string� new � string� �� unit �� POSIX ������a ��

val readlink � string �� string �� POSIX ������a ��

eqtype dev

eqtype ino

eqtype nlink

eqtype offset

datatype file�type

� DIR �� directory ��

� CHR �� character special file ��

� BLK �� block special file ��

� REG �� regular file ��

� FIFO �� pipe or fifo file ��

� LINK �� symbolic link �POSIX ������a� ��

� SOCK �� socket �not POSIX� ��

type stat � �

ftype � file�type�

mode � mode�

ino � ino�

dev � dev�

nlink � nlink�

uid � uid�

gid � gid�

size � offset option�

atime � Time�time�

mtime � Time�time�

ctime � Time�time

�

val stat � string �� stat

val lstat � string �� stat �� POSIX ������a ��

val fstat � file�desc �� stat

datatype access�mode � A�READ � A�WRITE � A�EXEC

val access � string � access�mode list �� bool

val chmod � �string � mode� �� unit

val chown � �string � uid � gid� �� unit

val fchown � �file�desc � uid � gid� �� unit �� POSIX ������a ��

val utime � �file � string� actime � Time�time� modtime � Time�time� �� unit

val pathconf � �string � string� �� int

val fpathconf � �file�desc � string� �� int

Last change: February 2, 1994 53

FILE-SYS(BASIS) Initial Basis FILE-SYS(BASIS)

DESCRIPTION

These are the operations described in Section 5 of the IEEE Std 1003.1-1990.

SEE ALSO

Posix(BASIS)

54 Last change: February 2, 1994

POSIX-IO(BASIS) Initial Basis POSIX-IO(BASIS)

NAME

Posix.IO — POSIX compliant interface to primitive I/O operations

SYNOPSIS

signature POSIX�IO

structure POSIX � POSIX �

struct

���

structure IO � POSIX�IO

���

end

SIGNATURE

Last change: February 2, 1994 55

POSIX-IO(BASIS) Initial Basis POSIX-IO(BASIS)

eqtype file�desc

eqtype offset

val pipe � unit �� �infd � file�desc� outfd � file�desc�

val dup � file�desc �� file�desc

val dup� � old � file�desc� new � file�desc �� unit

val close � file�desc �� unit

val read � �file�desc � int� �� string

val readbuf � �

fd � file�desc� nbytes � int� buf � ByteArray�bytearray� start � int

� �� int

val write � �file�desc � int � string� �� int

val writebuf � �

fd � file�desc� nbytes � int� buf � ByteArray�bytearray� start � int

� �� int

datatype whence � SEEK�SET � SEEK�CUR � SEEK�END

datatype fd�flag � FD�CLOEXEC

datatype file�status � FS�APPEND � FS�NONBLOCK

datatype open�mode � O�RDONLY � O�WRONLY � O�RDWR

val fcntl�DUPFD � old � file�desc� new � file�desc �� unit

val fcntl�GETFD � file�desc �� fd�flag list

val fcntl�SETFD � �file�desc � fd�flag list� �� unit

val fcntl�GETFL � file�desc �� �file�status list � open�mode�

val fcntl�SETFL � �file�desc � file�status list� �� unit

datatype lock�type � F�RDLCK � F�WRLCK � F�UNLCK

type flock � �

l�type � lock�type�

l�whence � whence�

l�start � offset�

l�len � offset�

l�pid � pid option

�

val fcntl�GETLK � �file�desc � flock� �� flock

val fcntl�SETLK � �file�desc � flock� �� flock

val fcntl�SETLKW � �file�desc � flock� �� flock

val lseek � �file�desc � offset � whence� �� offset

DESCRIPTION

These are the operations described in Section 6 of the IEEE Std 1003.1-1990.

SEE ALSO

Posix(BASIS)

56 Last change: February 2, 1994

PROC-ENV(BASIS) Initial Basis PROC-ENV(BASIS)

NAME

Posix.ProcEnv — operations on the process environment

SYNOPSIS

signature POSIX�PROC�ENV

structure POSIX � POSIX �

struct

���

structure ProcEnv � POSIX�PROC�ENV

���

end

SIGNATURE

Last change: February 2, 1994 57

PROC-ENV(BASIS) Initial Basis PROC-ENV(BASIS)

eqtype uid

eqtype gid

eqtype pid

eqtype file�desc

val getpid � unit �� pid

val getppid � unit �� pid

val getuid � unit �� uid

val geteuid � unit �� uid

val getgid � unit �� gid

val getegid � unit �� gid

val setuid � uid �� unit

val setgid � gid �� unit

val getgroups � unit �� gid list

val getlogin � unit �� string

val getpgrp � unit �� pid

val setsid � unit �� pid

val setpgid � pid � pid option� pgid � pid option �� unit

val setpgrp � pid � pid option� pgid � pid �� unit

val uname � unit �� �string � string� list

val time � unit �� Time�time

val times � unit �� �

utime � Time�time� �� user time of process ��

stime � Time�time� �� system time of process ��

cutime � Time�time� �� user time of terminated child processes ��

cstime � Time�time �� system time of terminated child processes ��

�

val getenv � string �� string option

val ctermid � unit �� string

val ttyname � file�desc �� string

val isatty � file�desc �� bool

val sysconf � string �� int

DESCRIPTION

These are the operations described in Section 4 of the IEEE Std 1003.1-1990.

SEE ALSO

Posix(BASIS)

58 Last change: February 2, 1994

PROCESS(BASIS) Initial Basis PROCESS(BASIS)

NAME

Posix.Process — operations on processes

SYNOPSIS

signature POSIX�PROCESS

structure POSIX � POSIX �

struct

���

structure Process � POSIX�PROCESS

���

end

SIGNATURE

Last change: February 2, 1994 59

PROCESS(BASIS) Initial Basis PROCESS(BASIS)

eqtype pid

val fork � unit �� pid option

val exec � string � string list �� int

val exece � string � string list � string list �� int

val execp � string � string list �� int

datatype posix�signal

� SIGABRT � SIGALRM � SIGFPE � SIGHUP � SIGILL � SIGINT � SIGKILL

� SIGPIPE � SIGQUIT � SIGSEGV � SIGTERM � SIGUSR� � SIGUSR�

� SIGCHLD � SIGCONT � SIGSTOP � SIGTSTP � SIGTTIN � SIGTTOU

� SIGOTHER of int

datatype waitpid�arg

� W�ANY�CHILD

� W�CHILD of pid

� W�ANY�GROUP

� W�GROUP of pid

datatype exit�status

� W�EXITED �� Why not W�EXITSTATUS �� ��

� W�EXITSTATUS of int

� W�SIGNALED of posix�signal

� W�STOPPED of posix�signal

val wait � unit �� pid � exit�status

val waitpid � waitpid�arg � bool �� pid � exit�status

val waitpid�nh � waitpid�arg � bool �� �pid � exit�status� option

val exit � int �� �a

val kill � pid � posix�signal �� unit

val alarm � int �� int

val pause � unit �� unit

val sleep � Time�time �� int

DESCRIPTION

These are the operations described in Section 3 of the IEEE Std 1003.1-1990.

SEE ALSO

Posix(BASIS)

60 Last change: February 2, 1994

SYS-DB(BASIS) Initial Basis SYS-DB(BASIS)

NAME

Posix.SysDB — operations on the system data-base

SYNOPSIS

signature POSIX�SYS�DB

structure POSIX � POSIX �

struct

���

structure SysDB � POSIX�SYS�DB

���

end

SIGNATURE

eqtype uid

eqtype gid

type passwd � �

name � string�

uid � uid�

gid � gid�

home�dir � string�

shell � string

�

type group � �

name � string�

gid � gid�

members � string list

�

val getgrgid � gid �� group

val getgrnam � string �� group

val getpwuid � uid �� passwd

val getpwnam � string �� passwd

DESCRIPTION

These are the operations described in Section 9 of the IEEE Std 1003.1-1990.

SEE ALSO

Posix(BASIS)

Last change: February 2, 1994 61

DEVICE(BASIS) Initial Basis DEVICE(BASIS)

NAME

Posix.Tty — operations on terminal devices

SYNOPSIS

signature POSIX�DEVICE

structure POSIX � POSIX �

struct

���

structure TTY � POSIX�TTY

���

end

SIGNATURE

eqtype pid �� process ID ��

eqtype file�desc �� file descriptor ��

datatype c�iflag

� BRIINT � ICRNL � IGNBRK � IGNCR � IGNPAR � INLCR

� INPCK � ISTRIP � IXOFF � IXON � PARMRK

datatype c�oflag � OPOST

datatype cbits

� CS� � CS
 � CS� � CS#

datatype c�cflag

� CLOCAL � CREAD � CSIZE of cbits � CSTOPB � HUPCL

� PARENB � PARODD

datatype c�lflag

� ECHO � ECHOE � ECHOK � ECHONL � ICANON � IEXTEN

� ISIG � NOFLSH � TOSTOP

datatype cc�item

� VEOF � VEOL � VERASE � VINTR � VKILL � VMIN � VQUIT

� VSUSP � VTIME � VSTART � VSTOP

type cc

val newcc � �cc�item � string� list �� cc

val updatecc � �cc � �cc�item � string� list� �� cc

val subcc � �cc � cc�item� �� string

type termios

datatype tcset�action � TCSANONE � TCSANOW � TCSADRAIN � TCSAFLUSH

datatype queue�sel � TCIFLUSH � TCOFLUSH � TCIOFLUSH

datatype flow�action � TCOOF � TCOON � TCIOFF � TCION

datatype speed

� B� � B�� � B�� � B��� � B��� � B��� � B��� � B��� � B
�� � B����

� B�#�� � B���� � B�#�� � B$
�� � B�$��� � B�#���

62 Last change: February 2, 1994

DEVICE(BASIS) Initial Basis DEVICE(BASIS)

val cfgetospeed � termios �� speed

val cfsetospeed � �termios � speed� �� unit

val cfgetispeed � termios �� speed

val cfsetispeed � �termios � speed� �� unit

val tcgetattr � file�desc �� termios

val tcsetattr � file�desc � tcset�action � termios �� unit

val tcsendbreak � file�desc � int �� unit

val tcdrain � file�desc �� unit

val tcflush � file�desc � queue�sel �� unit

val tcflow � file�desc � flow�action �� unit

val tcgetpgrp � file�desc �� pid

val tcsetpgrp � file�desc � pid �� unit

DESCRIPTION

These are the operations described in Section 7 of the IEEE Std 1003.1-1990.

SEE ALSO

Posix(BASIS)

Last change: February 2, 1994 63

PRIM-IO(BASIS) Initial Basis PRIM-IO(BASIS)

NAME

PrimIO — Primitive input/output operations

SYNOPSIS

signature PRIM IO

structure PrimIO : PRIM IO

SIGNATURE

exception Io of �

ml�op � string�

filename � string�

os�op � string�

reason � OS�syserror

�

datatype �a wr � Wr of �

name � string�

write � string �� unit�

putc � char �� unit

seek � int �� unit�

index � unit �� int�

flush � unit �� unit�

close � unit �� unit�

closed � unit �� bool�

buffered � unit �� bool�

seekable � unit �� bool�

ext � �a

�

datatype �a rd � Rd of �

name � string�

read � int �� string�

getc � unit �� char option�

peek � unit �� char option�

avail � unit �� int�

seek � int �� unit�

index � unit �� int�

close � unit �� unit�

eof � unit �� bool�

closed � unit �� bool�

buffered � unit �� bool�

seekable � unit �� bool�

ext � �a

�

type instream

type outstream

64 Last change: February 7, 1994

PRIM-IO(BASIS) Initial Basis PRIM-IO(BASIS)

val mkInstream � �a rd �� instream

val mkOutstream � �a wr �� outstream

val mkReader � instream �� unit rd

val mkWriter � outstream �� unit wr

val close�in � instream �� unit

val input � �instream � int� �� string

val inputc � instream �� int �� string

val input�line � instream �� string

val lookahead � instream �� string

val end�of�stream � instream �� string

val clear�eof � instream �� unit

val close�out � outstream �� unit

val output � �outstream � string� �� unit

val outputc � outstream �� string �� unit

val flush�out � outstream �� unit

DESCRIPTION

SEE ALSO

IO(BASIS)

Last change: February 7, 1994 65

REAL(BASIS) Initial Basis REAL(BASIS)

NAME

Real — generic interface to real arithmetic

SYNOPSIS

signature REAL

structure Real : REAL

SIGNATURE

type real

exception Div

exception Overflow

val � � real � real �� real

val � � real � real �� real

val � � real � real �� real

val 	 � real � real �� real

val " � real �� real

val abs � real �� real

val toDefault � real �� Real�real

val fromDefault � Real�real �� real

val floor � real �� Integer�int �� rounds toward negative infinity ��

val ceil � real �� Integer�int �� rounds toward positive infinity ��

val trunc � real �� Integer�int �� rounds toward zero ��

val round � real �� Integer�int �� rounds toward nearest� ties��nearest even ��

val real � Integer�int �� real

val � � real � real �� bool

val �� � real � real �� bool

val � � real � real �� bool

val �� � real � real �� bool

DESCRIPTION

SEE ALSO

Math(BASIS)

66 Last change: February 10, 1994

STRING(BASIS) Initial Basis STRING(BASIS)

NAME

String — basic operations on strings

SYNOPSIS

signature STRING

structure String : STRING

SIGNATURE

eqtype string

val size � string �� int

val sub � �string � int� �� char

val substring � �string � int � int� �� string

val isSubstring � �string � int � string� �� bool

val concat � string list �� string

val
 � �string � string� �� string

val str � char �� string

val implode � char list �� string

val explode � string �� char list

val � � �string � string� �� bool

val �� � �string � string� �� bool

val � � �string � string� �� bool

val �� � �string � string� �� bool

DESCRIPTION

Strings are finite sequences of characters.

size s

returns the number of characters in the string s.

sub (s, i)

returns the ith character in the string s. If i is out of range, then the exception �� is

raised.

substring (s, i, n)

returns an n character substring starting at the ith character of s. (exceptions ???)

isSubstring (s1, i, s2)

returns true if s1 is a substring of s2 starting at position i.

concat sl

returns the concatenation of the list of strings sl.

s1ˆs2

returns the concatenation of s1 and s2. This is a left-associative infix operator with

precedence level 6.

Last change: March 31, 1993 67

STRING(BASIS) Initial Basis STRING(BASIS)

str c

returns the string consisting of the character c.

implode cl

returns a string consisting of the characters in the list cl. This is equivalent to the

expression concat o �map str�.

explode s

explodes the string s into a list of its constituent characters.

SEE ALSO

Char(BASIS)

68 Last change: March 31, 1993

TIME(BASIS) Initial Basis TIME(BASIS)

NAME

Time — Representation of time values

SYNOPSIS

signature TIME

structure Time : TIME

SIGNATURE

datatype time � TIME of �sec � Integer�int� usec � Integer�int�

val addTime � �time � time� �� time

val subTime � �time � time� �� time

val earlier � �time � time� �� bool

val timeOfDay � unit �� time

DESCRIPTION

SEE ALSO

Timer(BASIS)

CAVEATS

We may want to support nano-second granularity.

Last change: March 31, 1993 69

TIMER(BASIS) Initial Basis TIMER(BASIS)

NAME

Timer — Interface to system timer

SYNOPSIS

signature TIMER

structure Timer : TIMER

SIGNATURE

type timer

val timer� � timer

val startTimer � unit �� timer

val checkTimer � timer �� �usr � time� sys � time� gc � time�

DESCRIPTION

timer0

is a timer started at system start-up.

startTimer ()

starts a new timer.

checkTimer timer

returns the current values of a timer.

SEE ALSO

Time(BASIS)

CAVEATS

70 Last change: March 31, 1993

VECTOR(BASIS) Initial Basis VECTOR(BASIS)

NAME

Vector — immutable polymorphic vectors

SYNOPSIS

signature VECTOR

structure Vector : VECTOR

SIGNATURE

eqtype �a vector

val maxlen � int

val vector � �a list �� �a vector

val tabulate � �int � �int �� �a�� �� �a vector

val extract � ��a vector � int � int� �� �a vector

val length � �a vector �� int

val sub � ��a vector � int� �� �a

DESCRIPTION

The Vector structure provides one-dimensional, zero-based, immutable indexable arrays.

maxlen

is the maximum length supported for vectors of this type.

vector l

creates an vector from the list of elements l. This raises the Size exception, if the

l has more than maxlen elements.

tabulate �n� f�

creates an vector of n elements, where the ith element is initialized to f�i�. The

function f is called in increasing order of i. This raises the Size exception, if n is

either too large (� maxlen) or negative.

length vec

returns the length of the vector vec.

sub �vec� i�

returns the ith element of vec. The exception Subscript is raised if i is out of

bounds.

extract �vec� i� n�

extracts a vector of length n from the vector vec, starting with the ith element. The

exception Subscript is raised if i or i� �n� 1� is out of bounds.

SEE ALSO

Array(BASIS), MONO VECTOR(BASIS)

Last change: February 10, 1994 71

WORD(BASIS) Initial Basis WORD(BASIS)

NAME

Word — unsigned machine integers

SYNOPSIS

signature WORD

structure Word : WORD

SIGNATURE

eqtype word

val wordSize � int

val wordToInt � word �� int

val intToWord � int �� word

val orb � word � word �� word

val xorb � word � word �� word

val andb � word � word �� word

val notb � word �� word

val lshift � word � int �� word

val rshift � word � int �� word

val alshift � word � int �� word

val arshift � word � int �� word

val plus � word � word �� word

val minus � word � word �� word

val times � word � word �� word

val divide � word � word �� word

val mod � word � word �� word

DESCRIPTION

The word type represents a sequence of wordSize bits, indexed from least significant to

most significant. Words can also be viewed as a machine dependent encoding of finite

precision integers (e.g., 2’s complement on most machines). If the structure SmallInt is

present, then

SmallInt�precision � SOME�Word�wordSize�

Also, if there are both Intn and Wordn structures present, then

Intn�precision � SOME�Wordn�wordSize�

wordToInt w

returns the integer that the word encodes.

72 Last change: March 31, 1993

WORD(BASIS) Initial Basis WORD(BASIS)

intToWord i

returns the word that encodes the given integer value. If the int type is arbitrary

precision, then this may cause the Overflow exception to be raised.

orb (w1, w2)

returns the bitwise or of w1 and w2.

xorb (w1, w2)

returns the bitwise exclusive-or of w1 and w2.

andb (w1, w2)

returns the bitwise and of w1 and w2.

notb w

returns the bitwise complement of w.

plus (w1, w2)

returns �w1 � w2� mod 2wordSize.

minus (w1, w2)

returns �w1 � w2� mod 2wordSize.

times (w1, w2)

returns �w1 � w2� mod 2wordSize.

divide (w1, w2)

returns
j

w1
w2

k
. Raises the Div exception if w� is �.

mod (w1, w2)

returns w1� w2�
j

w1
w2

k
. Raises the Div exception if w� is �.

[[shift operations should have Modula-3 semantics]]

SEE ALSO

Int(BASIS), SmallInt(BASIS)

Last change: March 31, 1993 73

Bibliography

[MTH90] Milner, R., M. Tofte, and R. Harper. The Definition of Standard ML. The MIT Press,

Cambridge, Mass, 1990.

[POS90] IEEE. POSIX – Part 1: System Application Program Interface, 1990.

[Rep90] Reppy, J. H. Asynchronous signals in Standard ML. Technical Report TR 90-1144,

Department of Computer Science, Cornell University, August 1990.

[Vil88] Villemin, J. Exact real computer arithmetic with continued fractions. In Conference

record of the 1988 ACM Conference on Lisp and Functional Programming, July 1988,

pp. 14–27.

74

