
Proposed interface for Standard ML Stream I�O

Andrew W� Appel

May ��� ����

� Introduction

The Input�Output interface provides�

� bu�ered reading and writing�

� arbitrary lookahead� using an underlying �lazy streams� mechanism�

� dynamic redirection of input or output�

� random access�

� uniform interface to text and binary data�

� layering of stream translations� through an underlying �reader�writer� interface�

� unbu�ered input�output� through the reader�writer interface or even through the bu�ered stream
interface�

� primitives su�cient to construct facilities for random access reading�writing to the same �le	

In addition� the prescriptions and recommendations herein allow for e�cient implementation� minimizing
system calls and memory
memory copying	

The I�O system has several layers of interface	 From bottom to top� they are

PRIM IO Uniform interface for unbu�ered reading and writing at the �system call� level� though not
necessarily via actual system calls	

STREAM IO Bu�ered �lazy functional stream� input� bu�ered conventional output	

IO Bu�ered� conventional �side
e�ecting� input and output with redirection facility	

Because most programmers will use the IO interface� I will describe that �rst� rather informally	 Then I
will go bottom
up over the entire system� giving a technical speci�cation of the interfaces� and their axioms
and pragmatics	

� IO

Conventional bu�ered input�output is done using several structures matching the IO signature� TextIO�
for character input�output� BinIO� for binary �byte� input�output	

signature IO �

sig

type instream

type outstream

type elem

type vector






type pos

val closeIn � instream �� unit

val input � instream �� vector

val inputAll � instream �� vector

val inputNoBlock � instream �� vector option

val input� � instream �� elem option

val inputN � instream � int �� vector

val endOfStream � instream �� bool

val lookahead � instream �� elem option

val setPosIn � instream � pos �� unit

val getPosIn � instream �� pos

val endPosIn � instream �� pos

val closeOut � outstream �� unit

val output � �outstream � vector� �� unit

val output� � outstream � elem �� unit

val flushOut � outstream �� unit

val getPosOut � outstream �� pos

val endPosOut � outstream �� pos

val setPosOut � outstream � pos �� unit

structure StreamIO � STREAM�IO

sharing type elem � StreamIO	elem

sharing type vector � StreamIO	vector

sharing type pos � StreamIO	pos

val mkInstream � StreamIO	instream �� instream

val getInstream � instream �� StreamIO	instream

val setInstream � instream � StreamIO	instream �� unit

val mkOutstream � StreamIO	outstream �� outstream

val getOutstream � outstream �� StreamIO	outstream

val setOutstream � outstream � StreamIO	outstream �� unit

end

structure FilePosInt � INTEGER

signature STANDARD�IO �

sig

include IO

sharing type pos�FilePosInt	int

val openIn � string �� instream

val openOut� string �� outstream

val openAppend� string �� outstream

val stdIn � instream

val stdOut� outstream

val stdErr� outstream

end

signature BIN�IO �

sig

include STANDARD�IO

sharing type StreamIO	elem�Word
	word

sharing type StreamIO	vector�Word
Vector	vector

end

signature TEXT�IO �

sig

include STANDARD�IO

sharing type StreamIO	elem � char

�



sharing type StreamIO	vector � string

structure BinIO � BIN�IO

val inputLine � instream �� string

val translateIn� BinIO	StreamIO	PrimIO	reader ��

StreamIO	PrimIO	reader

val translateOut� BinIO	StreamIO	PrimIO	writer ��

StreamIO	PrimIO	writer

end

structure BinIO � BIN�IO

structure TextIO � TEXT�IO

These operations may raise the General�Io exception�

exception Io of �name� string�

function� string�

cause� exn


Operations on instreams

elem
A single element �member of a stream�� forTextIO streams this is char� forBinIO this isWord��word	

vector
A sequence of elements �such as string or Word�Vector�vector�	

f � openIn�s�
Opens a �le named s as a stream f 	

closeIn�f�
Close f � no further operations are permitted on f �they will raise the Io exception�	

v � input�f�
Read some elements of f � returning a vector v	 If �and only if� f is at end of �le� size�v� � �	 May
block �not return until data is available in the external world�	

v � inputAll�f�
Return the vector v of all the elements of f up to end of stream	

inputNoBlock�f�
If any elements of f can be read without blocking� return at least one of them	 If it is possible to
determine without blocking that f is at end of stream� return some�empty�	 Otherwise return none	

c � input��f�
If at least one element e of f is available� return some�e�	 If f is at end of �le� return none	 Otherwise
block until one of those conditions occurs	

v � inputN�f� n�
If at least n elements remain before end of stream� return the �rst n elements	 Otherwise� return the
�possibly empty� sequence of elements remaining before end of stream	 Blocks if necessary	 �This was
the behavior of the input function in the 
��� De�nition of Standard ML� and pre

	�� releases of
SML�NJ	�

endOfStream�f�
False if any elements are available in f � true if f is at end of stream	 Otherwise blocks until one of
these conditions occurs	

�



c � lookahead�f�
Return the next element without advancing the stream� or at end of �le return none	 Multiple

character lookahead can be accomplished with the lazy functional stream interface� see section �	

setPosIn�f� i�
Seek to position i in f 	 Not always supported �raises Io if not supported on f���

i � getPosIn�f�
Tell the current position of f 	 Positions may not correspond 
�
 to elements in the �le� but should
increase semimonotonically	 Not always supported �raises Io if not supported on f��

i � endPosIn�f�
Tell the ending position of f 	 Not always supported �raises Io if not supported on f��

Operations on outstreams

closeOut�f�
Flush f �s bu�er and close the stream �releasing operating
system resources associated with it�	

output�f� v�
Write the sequence v to f 	

output��f� x�
Write the element x to f 	

�ushOut�f�
Flush f �s bu�er� that is� make the underlying �le re�ect any previous output operations	

i � getPosOut�f�
Tell the current position of f �not always supported� may raise exception�� Positions may not correspond

�
 to elements in the �le� but should increase semimonotonically	

i � endPosOut�f�
Tell the ending position of f 	 Not always supported �raises Io if not supported on f��

setPosOut�f� i�
Seek to position i of f �not always supported� may raise exception��

Any of these functions may raise the Io exception if an operation fails �including closeOut if a bu�er
cannot be �ushed�	

Random access

In order to avoid unnecessary limitations on �le sizes� the getPos� endPos� setPos functions all operate
on special FilePosInt integers�

structure FilePosInt� INTEGER

FilePosInt	int is abstract and does not share with Int	int or with any other integer type	
Users can operate on the pos type using FilePosInt�� and FilePosInt��� or �at the risk of being

unable to process large �les� convert to�from ordinary integers using FilePosInt�toDefault and File�
PosInt�fromDefault	

�On a pipe or other interactive stream� setPosIn will often succeed if �within the bu�er� but fail for larger distances� It�s

di�cult for users to write a predicate that tests a stream to see whether random access is supported on the underlying device�

In John Reppy�s opinion� this is a bug� I�ve done it this way because otherwise an extra fstat system call would be needed on

every �le� to see whether it supports random access�

�



STANDARD IO

The IO signature describes operating
system
independent input and output streams	 Implementations may
provide many ways of creating instreams and outstreams� using network connections� special devices� ML
functions that generate or consume elements on the �y� and so on	

But in many contexts a standard way of opening �les �named by simple strings��and standard input�
output� and error streams�will su�ce	 The STANDARD IO signature includes IO� plus�

f � openIn�s�
Open the �le named s for reading	

f � openOut�s�
Open the �le named s for writing at the beginning� truncating it if it already exists� creating it if not	

f � openAppend�s�
Open the �le named s for writing at the end� creating it if it does not already exist	 On Unix and other
operating systems that support �atomic append mode�� each individual �ushOut operation �or other
output operation that �ushes the bu�er� appends atomically to the current end of �le� even if other
processes are appending to the same �le between �ushOut operations	 The openAppend function
opens a �le in this mode� if possible	

stdIn
The standard input stream	�

stdOut
The standard output stream	

stdErr
The standard stream for writing error messages	

Both TextIO and BinIO have stdIn streams �of di�erent types�� but these are implemented on the same
underlying �le	 Users who do bu�ered input on both TextIO�stdIn and BinIO�stdIn will see arbitrary
interleaving	� The treatment of stdOut and stdErr is analogous	

TEXT IO

Text streams �TextIO�instream� contain lines of text and control characters	 Text lines are terminated
with ���n� characters	

On operating systems that use CR�LF or CR as line terminators� these will be translated to single
���n� characters	 The inverse translation will be done on output	

More substantial translation will be done on operating systems that use� for example� escape
coded
Unicode text �les	

The TextIO structure provides� in addition to STANDARD IO�

s � inputLine�f�
Read one line from a text �le� returning characters up to and including the next newline character	
If end
of
�le is reached before a newline character� all characters remaining in the �le are returned	
Thus� if end
of
�le is reached immediately� the empty string will result	

f � translateIn�g�
The default �operating
system speci�c� translation from binary instreams to text instreams	

f � translateOut�g�
The default �operating
system speci�c� translation from binary outstreams to text outstreams	

�Reppy prefers the spelling stdin� but stdIn is more consistent with openIn� setPosIn� etc�
�Reppy prefers that stdIn� stdOut� stdErr be present only in the TextIO module� not in BinIO� with an alternate

method to access the standard input and output �le descriptors as bu�ered binary streams�

�



Closing �les on program exit

All streams created by TextIO�openIn� TextIO�openOut� BinIO�openIn� and BinIO�openOut will
be closed �the outstreams among them �ushed� when the ML program exits	 The outstreams stdOut and
stdErr will be �ushed� but not closed� on program exit	

Redirecting IO streams

There is also a set of primitives to relate IO streams to the �lazy functional streams� model of input�output�
and thus to the underlying unbu�ered reader�writer primitives�

StreamIO
The particular instantiation of the STREAM IO interface underlying this IO module �i	e	� streams
of bytes� chars� or some other element type�	

f �mkInstream�s�
Create a conventional stream f from a functional stream s	

s � getInstream�f�
Extract the functional stream s from f 	 This allows arbitrary lookahead� for example�

fun lookaheadN�f�n� �

let val f� � mkInstream�getInstream�f��

in inputN�f��n�

end

This makes a �copy� f � of the stream f � then input operations in f � won�t a�ect f �though setPosIn
on f � may e�ectively close f�	 For more details� see sections �� �� �� �� and �� which give a more precise
speci�cation of stream behavior	

setInstream�f� s�
Redirect f � so that further input comes from s	 For example�

fun fromFile�g�name� �

let val f � openIn name

val saveStdIn � getInstream stdIn

in setInstream�stdIn�getInstream f��

g���

setInstream�stdIn� saveStdIn�

end

For more details� see the next few sections	

f �mkOutstream�s�
Create a conventional outstream f from a StreamIO�outstream s	 The output streams in StreamIO
are not �functional�� they are conventional streams operated on by side
e�ecting output	 The di�erence
between an IO�outstream and a StreamIO�outstream is that the former may be redirected using
setOutstream	 Think of the former as a ref of the latter	

s � getOutstream�f�
Extract the underlying outstream s from the redirectable outstream f 	 Unfortunately� s is not �pure
functional�� so there�s no equivalent of the lookahead trick shown above	 Unlike instreams� if

val f� � mkOutstream�getOutstream f�

then operations on f � are equivalent to operations on f 	

�



setOutstream�f� s�
Useful for redirecting output	 For example�

fun toFile�g�name� �

let val f � TextIO	openOut name

val saveStdOut � getOutstream stdOut

in setOutstream�stdOut�getOutstream f��

g���

setOutstream�stdOut� saveStdOut�

end

In can be argued that this is not very elegant� the function g� instead of writing stu� to stdOut� should
have been parameterized �in the usual ML way� on an outstream from the very beginning	 Then the
get and set primitives wouldn�t be needed	

Translation

In some environments� the external representation of a text �le is di�erent from its internal representation�
for example� in MS
DOS� text �les on disk contain CR
LF� and in memory contain only LF at the end of
each line	 Binary streams �BinIO�instream� match the external �les byte for byte� text streams �Tex�
tIO�instream� are translated	 Normally� users of TextIO will not need to know or care about this trans

lation� but for more sophisticated users� the translation functions are made visible as TextIO�translateIn
and TextIO�translateOut	 On Unix systems� these will be identity functions	 See section �	�	

� PRIM IO

Primitive I�O is meant to be an abstraction of the system call operations commonly available on �le descrip

tors	

For basic �operating system� functions such as reading and writing� the input�output modules do not
reference the OS structure directly	 Instead� each stream is built on a PrimIO�reader or PrimIO�writer�
the readers and writers contain functions that can accomplish the system calls	 But it is also possible for
users to synthesize readers or writers that don�t do system calls at all� or do unconventional ones	

signature PRIM�IO �

sig

type elem

type vector

type array

type pos

val posLess � pos � pos �� bool

datatype reader � Rd of

readBlock � �int �� vector� option�

readaBlock� �data� array� first� int� nelems� int ��

int� option�

readNoBlock � �int �� vector option� option�

readaNoBlock� �data� array� first� int� nelems� int ��

int option� option�

block � �unit �� unit� option�

canInput � �unit �� bool� option�

name � string�

chunkSize � int�

close � unit �� unit�

getPos � unit �� pos�

findPos � data� vector� first� int� nelems� int�pos �� pos�

�



setPos � �pos �� unit��

endPos � �unit �� pos�

datatype writer � Wr of

writeNoBlock� �data� vector� first� int� nelems� int ��

int option� option�

writeaNoBlock� �data� array� first� int� nelems� int ��

int option� option�

writeBlock� �data� vector� first� int� nelems� int ��

int� option�

writeaBlock� �data� array� first� int� nelems� int ��

int� option�

block� �unit��unit� option�

canOutput� �unit��bool� option�

name� string�

chunkSize� int�

close� unit �� unit�

getPos � �unit��pos��

setPos � �pos��unit��

endPos � �unit��pos�

val augmentIn � reader �� reader

val augmentOut� writer �� writer

end

A �le �device� etc	� is a sequence of �elements� �elem�� which may �for example� be characters or bytes	
The distinction between characters and bytes is necessary on DOS� where CR
LF is translated to LF when
reading character �les� or on Windows
NT where characters are 
�
bits �Unicode� and bytes are � bits	

One typically reads or writes a sequence of elements in one system call� this sequence is the vector type	
Sometimes it is useful to write the sequence from a mutable array instead of from the vector	

A reader is a �le �device� etc	� opened for reading� and a writer one opened for writing	
The components of a reader are

close��
Closes the reader �for example� frees operating system resources�	 Further operations to this reader
are illegal and must be checked for by the reader �the General�ClosedStream exception must be
raised�	

name
The name associated with this �le or device� for use in error messages shown to the user	

chunkSize
The recommended �e�cient� size of read operations on this reader	 This is typically to the block size
of the operating system�s bu�ers	 If that is not known� a value of ���� or ���� will probably work well	
ChunkSize� 
 strongly recommends �but cannot guarantee� since bu�ering occurs in other modules�
not this one� unbu�ered I�O on this reader	 ChunkSize� � is illegal	

readNoBlock�n�
�optional� Reads i elements without blocking� for 
 � i � n� creating a vector v� returning some�v�� or
�if end of �le is detected without blocking�� returns some�empty �� or �if a read would block� returns
none	

readBlock�n�
�optional� Reads i elements for 
 � i � n returning a vector v of length i� or �if end of �le is detected�
returns an empty vector	 Blocks �waits� if necessary until end of �le is detected or at least one element
is available	 To achieve �block until exactly n elements have been read� it is necessary to loop on
readBlock� because each call only guarantees to block until at least one element is ready	

�



readaNoBlockfbuf�a�	rst�i�nelems�ng
�optional� Reads k elements without blocking� for 
 � k � n into ai� � � � � ai�k��� returning some�k��
if no elements remain before end
of
�le� returns some��� without blocking� or �if a read would block�
returns none	

readaBlockfbuf�a�	rst�i�nelems�ng
�optional� Reads k elements for 
 � k � n into ai� � � � � ai�k��� returning a vector k� blocks �waits� if
necessary until at least one element is available	 If no elements reamain before end
of
�le� returns �	

block��
�optional� Returns only when at least one element is available for read without blocking	

canInput��
�optional� Returns true i� the next read can proceed without blocking	

p � getPos��
Tells the current position in the �le	 Useful even for non
seekable �les� especially if the endPos function
is provided �because large input operations are more e�cient if the distance from �here to end of �le�
is known�	

The getPos function must be nondecreasing �in the absence of setPos operations� or other interference
to the underlying object�	 Where setPos is not provided� the reader can just count the elements
returned from read operations and getPos can tell the count	 But an implementation of getPos that
always returns zero is legal	

p� � 	ndPos�fdata � v� �rst � i� nelems � ng� p�
Tells the position p� of the �i � n�th element of the vector v� assuming that the position of the ith
element is p	 Section �	� explains why this is useful	

setPos�i�
�optional� Move to position i in �le	 Optional� in the sense that it may raise an exception if unimple

mented or invalid	

endPos��
The position at the end of the �le	 Optional� in the sense that it may raise an exception if unimple

mented� or invalid on this reader	

Providing more of the optional functions increases functionality and�or e�ciency of clients�


	 Absence of all of readBlock� readaBlock� and block means that blocking input is not possible	

�	 Absence of all of readNoBlock� readaNoBlock� and canInput means that non
blocking input is
not possible	

�	 Absence of readNoBlock means that non
blocking input requires two system calls �using canInput�
readBlock�	

�	 Absence of readaNoBlock or readaBlock means that input into an array requires extra copying	
But the �lazy functional stream� model does not use arrays at all�

The augmentIn function takes a reader r and produces a reader in which as many as possible of
readBlock� readaBlock� readNoBlock� readaNoBlock are provided� by synthesizing these from
the operations of r	 For example� augmentIn can synthesize readBlock from readNoBlock�block�
synthesize vector reads from array reads� synthesize array reads from vector reads� as needed	

If the reader can provide more than the minimum set in a way that is more e�cient then the obvious
synthesis than by all means it should do so	 Providing more than the minimum by just doing the
obvious synthesis inside the PrimIO layer is not recommended because then clients won�t get the
�hint� about which are the e�cient ��recommended�� operations	

�



�	 Absence of endPos means that very large inputs �where vectors must be pre
allocated� cannot be
done e�ciently �in one system call� without copying�	

�	 The client is likely to call getPos on every read operation	 Thus� the reader should maintain its own
count of �untranslated� elements to avoid repeated system calls	 This should not be done on streams
opened for atomic append� of course� where the information cannot be obtained except by a system
call	

�	 Absence of setPos prevents random access	

�	 The 	ndPos function is needed in conjunction with readers that do translation� so that positions do
not always correspond 
�
 to elements returned from read	 If the translation function is invertible�
then 	ndPos will be straightforward to implement	 If not invertible� then 	ndPos can seek to pos
in the underlying �le� and re
translate forward to the right point	 In that case� the implementation of
	ndPos will probably require� p� � get��� setPos�pos�� read� setPos�p�� to restore the �le position
to what it was before the 	nd operation	

�	 Readers that do no translation� so that positions do correspond 
�
 to elements returned from the
read functions� can provide a very simple 	ndPos function�

fun find��data�first�nelems
�p� �

FilePosInt	��p� FilePosInt	fromDefault nelems�


�	 Readers whose getPos always returns zero should also have a 	ndPos that always returns zero	

The components of a writer are�

writeBlockfbuf�v�	rst�i�nelems�ng
This �optional� function writes elements vi� � � � � vi�k��� for � � k � n to the output device� and returns
k	 If necessary� waits �blocks� until the external world can accept at least one element	

writeaBlockfbuf�a�	rst�i�nelems�ng
This �optional� function writes elements ai� � � � � ai�k��� for � � k � n to the output device� and returns
k	 If necessary� waits �blocks� until the external world can accept at least one element	

writeNoBlockfbuf�v�	rst�i�nelems�ng
This �optional� function writes elements vi� � � � � vi�k��� for � � k � n to the output device without
blocking� and returns some�k�� or �if the write would block� returns none	

writeaNoBlockfbuf�a�	rst�i�nelems�ng
This �optional� function writes elements vi� � � � � vi�k��� for � � k � n to the output device without
blocking� and returns some�k�� or �if the write would block� returns none	

block��
This �optional� function does not return until the writer is guaranteed to be able to write without
blocking	

canOutput��
�optional� Returns true i� the next write can proceed without blocking	

name
The name associated with this �le or device� for use in error messages shown to the user	

chunkSize
The recommended �e�cient� size of write operations on this writer	 This is typically to the block size
of the operating system�s bu�ers	 If that is not known� a value of ���� or ���� will probably work well	
ChunkSize� 
 strongly recommends �but cannot guarantee� since bu�ering occurs in other modules�
not this one� unbu�ered I�O on the writer	 ChunkSize � � is illegal �functions in other modules
taking writers as arguments may raise exceptions�	


�



close��
Closes the writer �for example� frees operating system resources devoted to this writer�	 Further
operations to this writer are illegal and must be checked for by the writer	

getPos��
Tells the current position within the �le	 Most useful on seekable writers	 Optional� in the sense that
it may raise an exception if unimplemented or invalid	

endPos��
The position at the end of the �le	 Optional� in the sense that it may raise an exception if unimple

mented or invalid	

setPos�i�
Moves to position i in the �le� so future writes occur at this position	 Optional� in the sense that it
may raise an exception if unimplemented or invalid	

One of writeBlock� writeaBlock� writeNoBlock� or writeaNoBlock must be provided	 Providing
more of the optional functions increases functionality and�or e�ciency of clients�


	 Absence of all of writeBlock� writeaBlock� and block means that blocking output is not possible	

�	 Absence of all of writeNoBlock� writeaNoBlock� and canOutputmeans that non
blocking output
is not possible	

�	 Absence of writeNoBlockmeans that non
blocking output requires two system calls �using canOut�
put� writeBlock�	

�	 Absence of writeaBlock or writeaNoBlock means that extra copying will be required to write from
an array	

�	 Absence of writeaNoBlock� writeNoBlock� and canOutput from a writer means that nonblocking
output is impossible	 But the standard StreamIOmodules do not support nonblocking output anyway	

�	 Absence of setPos prevents random access	

Unlike readers� which can expect their getPos functions to be called frequently� writers need need not
implement getPos in a super
e�cient manner� a system call for each getPos is acceptable	 Furthermore�
getPos need not be supported for writers �it may raise an exception�� whereas for readers it must be
implemented �even if inaccurately�	

The augmentOut function takes a writer w and produces a writer in which as many as possible of
writeBlock�writeaBlock� writeNoBlock� writeaNoBlock are provided� by synthesizing these from the
operations of w	

Exceptions The PrimIO functions �component �elds of readers and writers� may raise the following ex

ceptions�

Subscript for any function taking the fdata� �rst� nelems g type� if �rst and nelems imply an out
of
bounds
reference to data	

SysErr for any function that performs a system call	

ClosedStream for attempted operations on closed readers or writers	

� Other exceptions as needed for special purposes �unconventional readers and writers�	

Readers and writers should not� in general� raise the Io exception	







� PrimIO

The functor PrimIO builds standard instances of the PRIM IO signature	

functor PrimIO�structure A � MONO�ARRAY

structure V � MONO�VECTOR

sharing type A	elem�V	elem

sharing type A	vector�V	vector

val someElem � A	elem

type pos� � PRIM�IO �

struct 	 	 	 end

The only nontrivial parts of the PrimIO functor are the implementations of the functions augmentIn�
and augmentOut� which simulate one kind of reader �or writer� functionality in terms of other kinds	 For
example�

fun augmentIn �r as Rd r�� �

let fun readaToRead reada i �

let val a � A	array�i�someElem�

val i� � reada�data�a�first���nelems�i
�

in A	extract�a���i��

end

fun stripOption �SOME x� � x

val readBlock� �

case r

of Rd�readBlock�SOME f�			
 �� SOME f

� Rd�readaBlock�SOME f�			
 �� SOME�readaToRead f�

� Rd�readNoBlock�SOME f�block�SOME b�			
 ��

SOME�fn i �� �b��� stripOption�f i���

� Rd�readaNoBlock�SOME f� block�SOME b�			
 ��

SOME�fn i �� �b��� stripOption�readaToRead f i���

� � �� NONE

	 	 	

in Rd�block� �block r�� 	 	 	 readBlock�readBlock�� 	 	 	 


end

� STREAM IO

The Stream I�O interface provides bu�ered reading and writing to input and output streams	
Input streams are treated in the lazy functional style� that is� input from a stream f yields a �nite

vector of elements� plus a new stream f �	 Input from f again will yield the same elements� to advance
within the stream in the usual way it is necessary to do further input from f �	 This interface allows arbitrary
lookahead to be done very cleanly� which should be useful both for ad hoc lexical analysis and for table
driven�
regular
expression
based lexing	

Output streams are handled more conventionally� since the lazy functional style doesn�t seem to make
sense for output	

signature STREAM�IO �

sig

structure PrimIO� PRIM�IO

type elem sharing type elem � PrimIO	elem

type vector sharing type vector � PrimIO	vector

type pos sharing type pos � PrimIO	pos

type instream


�



type outstream

val mkInstream � PrimIO	reader �� instream

val closeIn � instream �� unit

val setPosIn � instream � pos �� instream

val getPosIn � instream �� pos

val endPosIn � instream �� pos

val input � instream �� vector � instream

val inputAll � instream �� vector

val inputNoBlock � instream �� �vector � instream� option

val input� � instream �� elem option � instream

val inputN � instream � int �� vector � instream

val endOfStream � instream �� bool

val getReader � instream �� PrimIO	reader

val mkOutstream � PrimIO	writer �� outstream

val closeOut � outstream �� unit

val output � �outstream � vector� �� unit

val output� � �outstream � elem� �� unit

val flushOut � outstream �� unit

val getPosOut � outstream �� pos

val setPosOut � outstream � pos �� unit

val endPosOut � outstream �� pos

val getWriter� outstream �� PrimIO	writer

end

Each instream f can be viewed as a sequence of �available� elements �the bu�er or sequence of bu�ers�
and a mechanism �the reader� for obtaining more	 After an operation �v� f �� � input�f� it is guaranteed
that v is a pre�x of the available elements	 In a �truncated� instream� there is no mechanism for obtaining
more� so the �available� elements comprise the entire stream	 In a �terminated� outstream� there is no
mechanism for outputting more� so any output operations will raise the Io exception	

PrimIO
Every instance of STREAM IO is built over an instance of PRIM IO	

elem
A single element �member of a stream�	

vector
A sequence of elements� just as in PRIM IO	

f �mkInstream�r�
Create a bu�ered stream f from a reader r	 �Most users will normally use TextIO�openIn instead	�

closeIn�f�
Truncate f � and release operating system resources associated with the underlying �le �if any�	

g � setPosIn�f� i�
Now g is a new instream starting from position i of f 	 f may or may not be truncated� depending
on whether the setPos request can be satis�ed within the bu�er	 �Nondeterministic behavior� is that
bad�� Not always supported�

getPosIn�f�
Return the current position of f 	 Not always supported�

endPosIn�f�
Return the position at end of �le of f 	 Not always supported�


�



�v� f �� � input�f�
If any elements of f are available� return sequence v of one or more elements and the �remainder� f �

of the stream	 If f is at end of �le� return the empty sequence	 Otherwise read from the operating
system �which may block� until one of those conditions occurs	

v � inputAll�f�
Return the vector v of all the elements of f up to end of stream	 Semantically equivalent to�

fun inputAll�f� � let val �a�f�� � input f

in if size�a��� then a

else a � inputAll f�

end

where � is the concatenation operator on element vectors	

�v� f �� � inputNoBlock�f�
If any non
empty sequence v of f is available or can be read from the operating system without
blocking� return some�w� f �� where w is any non
empty pre�x of v� and f � is the �rest� of the stream	
Otherwise return none	

�c� f �� � input��f�
If at least one element e of f is available� return �some�e�� f ��	 If f is at end of �le� return the none	
Otherwise read from the operating system �which may block� until one of those conditions occurs	
Semantically equivalent to�

fun input��f� � let val �v�f�� � input f

in �if size�v��� then NONE else SOME�sub�v�����

f��

end

�v� f �� � inputN�f� n�
If at least n elements remain before end of stream� return the �rst n elements	 Otherwise� return the
�possibly empty� sequence of elements remaining before end of stream	 Blocks if necessary	 �This was
the behavior of the input function in the 
��� De�nition of Standard ML	� Semantically equivalent
to�

fun inputN�f��� � �empty� f�

� inputN�f�n� � let val �x�f�� � input� f

val �s�f��� � inputN�f�n���

in �x�s� f���

end

endOfStream�f�
False if any characters are available in f � true if f is at end of stream	 Otherwise reads �perhaps
blocking� until one of these conditions occurs	 Exactly equivalent to �size�input f����	

getReader�f�
Extract the underlying reader from f 	 Truncates f 	 Careful users should probably do something like

let val r � getReader f

val v � inputAll f

in 			

end

so as to obtain the elements v already in the bu�er before doing anything with r	


�



f �mkOutstream�w� s�
Create a bu�ered outstream f from a writer w	 In w� writeBlock� writeaBlock� and block must
not all be none or an Io exception will be raised	

closeOut�f�
Flush f �s bu�er� terminate f � then close the underlying writer �releasing operating
system resources
associated with it�	

�ushOut�f�
Flush f �s bu�er� that is� make the underlying �le re�ect any previous output operations	

output�f� v�
Write the sequence v to f � this may block until the system is prepared to accept more output	
StreamIO does not provide any nonblocking output function	

output��f� x�
Write the element x to f � may block	

getWriter�f�
Get the underlying writer associated with f 	 Flushes and terminates f 	

getPosOut�f�
Give the current position of f in the underlying �le	 Not always supported�

endPosOut�f�
The position at the end of �le f 	 Not always supported�

setPosOut�f� i�
Set the current position of f in the underlying �le to i	 Flush f if necessary	 Not always supported�

Any pre�x of the concatenation of previous writes �since the last setPos or �ush� may be re�ected in the
underlying �le	

Operations marked Not always supported may fail on some streams or in some instantiations of the
STREAM IO signature� raising Io	

Rules� The following expressions are all guaranteed true� if they complete without exception	
Input is semi
deterministic� input may read any number of elements from f the ��rst� time� but then

it is committed to its choice� and must return the same number of elements on subsequent reads from the
same point	

let val �a��� � input f

val �b��� � input f

in a�b

end

Closing a stream just causes the not
yet
determined part of the stream to be empty�

let val �a�f�� � input f

val � � closeIn f

val �b��� � input f

in a�b andalso endOfStream f�

end �� must be true ��

Closing a terminated stream is legal and harmless�

�closeIn f� closeIn f� true�

If a stream has already been at least partly determined� then input cannot possibly block�


�



let val a � input f

in case inputNoBlock f

of SOME a �� a�b

� NONE �� false

end �� must be true ��

Note that a successful inputNoBlock does not imply that more characters remain before end
of
�le� just
that reading won�t block	

A freshly opened stream is still undetermined �no �read� has yet been done on the underlying reader��

let val a � TextIO	openIn name �� or mkInstream�r��

or BinIO	openIn name ��

in close a�

size�input a� � �

end

This has the useful consequence that if one opens a stream� then extracts the underlying reader� the reader
has not yet been advanced in its �le	

Closing a stream guarantees that the underlying reader will never again be accessed� so input can�t
possibly block�

�case �close f� inputNoBlock f� of SOME � �� true � NONE �� false�

The endOfStream test is equivalent to input returning an empty sequence�

let val �a��� � input f in �size�a���� � �endOfStream f� end

getPosIn is accurate even if two di�erent instreams are created from the same reader and they interleave
operations	 Thus� the implementation of StreamIO must make no assumption that the position at the end
of one read operation is the same as the position at the beginning of the next	

Exceptions StreamIO functions may raise the Subscript exception� if given ill
formed array and bounds
arguments by a client� or the Io exception	 In general� when Io is raised as a result of a failure in a lower
level
module �PrimIO�� the underlying exception is propagated up as the cause component of the Io exception
value	

This will usually be a Subscript� SysErr� or Fail exception� but the StreamIO module will rarely
�perhaps never� need to inspect it	

The components of Io are�

function
The name of the StreamIO function raising the exception	

name
Should equal the name component of the reader or writer	

cause
The underlying exception raised by the reader or writer� or detected by StreamIO	 Some of the
standard causes are�

� OS�SysErr if an actual system call was done and failed�

� General�BlockingNotSupported for output� output�� �ushOut� if the underlying writer
does not support blocking writes� or for input� inputN� input�� inputAll if the underlying
reader does not support blocking reads	

� General�NonBlockingNotSupported for inputNoBlock	

� General�TerminatedStream for setPosIn on a terminated stream	

� General�ClosedStream for any output operation on a closed �le	 This exception is actually
raised by the reader or writer	 �Input operations on closed streams will generally raise Termi�
nated	�


�



The cause �eld of Io is not limited to these particular exceptions	 Users who create their own readers
or writers may raise any exception they like� which will be reported as the cause �eld of the resulting
Io exception	

Unbu
ered I�O That is� if chunkSize�
 in the underlying reader� then input operations must be un

bu�ered�

let val f � mkInstream�reader�

val �a�f�� � input�f�n�

val PrimIO	Rd�chunkSize�			
�getInstream f

in chunkSize�� orelse endOfStream f�

end

Though input may perform a read�k� operation on the reader �for k � 
�� it must immediately return all
the elements it receives	 However� this does not hold for partly determined instreams�

let val f � mkInstream�reader�

val � � doInputOperationsOn�f�

val �a�f�� � input�f�n�

val PrimIO	Rd�chunkSize�			
�getInstream f

in chunkSize�� orelse endOfStream f� �� could be false��

end

because in this case� the stream f may have accumulated a history of several responses� and input is required
to repeat them one at a time	

Similarly� output operations are unbu�ered if chunkSize�
 in the underlying writer	 Unbu�ered output
means that the data has been written to the underlying writer by the time output returns	

Don�t bother the reader inputmust be done without any operation on the underlying reader� whenever
it is possible to do so by using elements from the bu�er	 This is necessary so that repeated calls to endOfFile
will not make repeated system calls	

This rule could be formalized by de�ning a �monitor��

val monitor� reader �� �rd� reader�

charsRead� int ref�

opCount� int ref


and making statements such as�

let val �rd�charsRead�opCount
 � monitor�reader�

val f � mkInstream�rd�

val �f��nElems� � doThingsCountingElements�f�

val p� � getPosIn f�

val c� � �charsRead

val ops � �opCount

val � � input f�

in not ��nElems � c�� andalso ��opCount � ops��

end

but perhaps this level of detail is unnecessary	

Multiple end�of�	le In Unix� and perhaps in other operating systems� there is no notion of �end of
stream	� Instead� by convention a read system call that returns zero bytes is interpreted to mean end of
stream	 However� the next read to that stream could return more bytes	 This situation would arise if� for
example�

� the user hits cntl
D on an interactive tty stream� and then types more characters�


�



� input reaches the end of a disk �le� but then some other process appends more bytes to the �le	

Consequently� the following is not guaranteed to be true�

let val z � endOfStream f

val �a�f�� � input f

val x � endOfStream f�

in x�z �� not necessarily true� ��

end

The �don�t bother the reader� rule� combined with the de�nition of endOfStream� guarantees that

endOfStream�f� � endOfStream�f�	

Implementors should beware that an empty bu�er sometimes means end of stream� and sometimes not� I
found an extra boolean variable necessary to keep track	

� StreamIO

The functor StreamIO layers a bu�ering system on a primitive IO module�

functor StreamIO�structure PrimIO � PRIM�IO

structure Vec� MONO�VECTOR

structure Arr� MONO�ARRAY

val someElem � PrimIO	elem

val posLess � PrimIO	pos � PrimIO	pos �� bool

val posDiff � ��lo� PrimIO	pos� hi� PrimIO	pos
 �� int� option

sharing type PrimIO	elem � Arr	elem � Vec	elem

sharing type PrimIO	vector�Arr	vector�Vec	vector

sharing type PrimIO	array�Arr	array

� � STREAM�IO � 			

The Vec and Arr structures provide Vector and Array operations for manipulating the vectors and arrays
used in PrimIO and StreamIO	 The element someElem is used to initialize bu�er arrays� any element will
do	

The types instream and outstream in the result of the StreamIO functor must be abstract	
If �ushOut �nds that it can do only a partial write �i	e	� writeaBlock or a similar function returns a

�number of elements written� less than its �nelems� argument� then �ushOutmust adjust its bu�er for the
items written and then try again	 If the �rst or any successive write attempt returns zero elements written
�or raises an exception� then �ushOut raises an Io exception	

If an exception occurs during any StreamIO operation� then StreamIO must� of course� leave itself in
a consistent state� without losing or duplicating data	

In some ML systems� a user interrupt aborts execution and returns control to a top
level prompt� without
raising any exception that the current execution can handle	 It may be the case that some information must
be lost or duplicated	 Data �input or output� must never be duplicated� but may be lost	 This can be
accomplished without StreamIO doing any explicit masking of interrupts or locking	 On output� the
internal state �saying how much has been written should be updated before doing the write operation� on
input� the read should be done before updating the count of valid characters in the bu�er	

StreamIO does not need PrimIO�pos to be any kind of integer� but it must be a total ordering with a
total and irre�exive comparison operator posLess supplied� and the PrimIO read operations must semi

monotonically increase the position values	

Implementation notes�
The previous section gives the speci�cation of StreamIO behavior	
With bu�ered reading� a getPosIn operation on the instream may be done in the middle of a bu�er	

Calculating this requires knowing the position of the beginning of the bu�er� and using 	ndPos	 But this


�



means that the StreamIO system must do a getPos just before reading each new bu�er� and remember
that position	

Here are some suggestions for e�cient performance�

� Operations on the underlying readers and writers �readBlock� etc	� are expected to be expensive
�involving a system call� with context switch�	

� Small input operations can be done from a bu�er� the readBlock or readNoBlock operation of the
underlying reader can replenish the bu�er when necessary	

� Each reader may provide only a subset of readBlock� readNoBlock� block� canInput� etc	 An
augmented reader that provides more operations that can be constructed using PrimIO�augmentIn�
but it may be more e�cient to use the functions directly provided by the reader� instead of relying on
the constructed ones	 The same applies to augmented writers	

� Keep the position of the beginning of the bu�er on a multiple
of
chunkSize boundary� and do read
or write operations with a multiple
of
chunkSize number of elements	

� For very large inputAll or inputN operations� it is �somewhat� ine�cient to read one chunkSize at
a time and then concatenate all the results together	 Instead� it is good to try to do the read all in one
large system call� that is� readBlock�n�	 However� in a typical implementation of readBlock this
requires pre
allocating a vector of size n	 If the user does inputAll�� or inputN�maxint�� either the size
of the vector is not known a priori or the allocation of a much
too
large bu�er is wasteful	 Therefore�
for large input operations� query the size of the reader using endPos� subtract the current position�
and try to read that much	 But one should also keep things rounded to the nearest chunkSize	

� Subtracting the current position is di�cult ��� if pos is an abstract type	 The optional function posDi

is provided to compute �even approximately� the distance �in elements� between two positions	 A slight
overestimate in the computation is better than a slight underestimate	

� The use of endPos to try to do �large� read operations of just the right size will be inaccurate on
translated readers	 But this inaccuracy can be tolerated� if the translation is anything close to 
�
�
endPos will still provide a very good hint about the order
of
magnitude size of the �le	

� Similar suggestions apply to very large output operations	 Small outputs go through a bu�er� the
bu�er is written with writeaBlock	 Very large outputs can be written directly from the argument
string using writeBlock	

� A lazy functional instream can �should� be implemented as a sequence of immutable �vector� bu�ers�
each with a mutable ref to the next �thing�� which is either another bu�er� the underlying reader� or
an indication that the stream has been truncated	

� The input function should return the largest sequence that is most convenient� usually this means
�the remaining contents of the current bu�er	�

� To support non
blocking input� use readNoBlock if it exists� otherwise do canInput followed �if
appropriate� by readBlock	

� To support blocking input� use readBlock if it exists� otherwise do readNoBlock followed �if would
block� by block and then another readNoBlock	

� To support lazy functional streams� readaBlock and readaNoBlock are not useful� they are included
only for completeness	

� SetPosIn� if setPos
ing forward� might choose to follow the bu�er sequence� and can perhaps satisfy
the setPos request without any underlying reader operation	

� GetPosIn� in some implementations� can tell the position without a system call� if it knows the
position of the beginning of the bu�er and the current position within the bu�er	


�



� writeaBlock should� if necessary� be synthesized from writeBlock� and vice versa	 Similarly for
writeaNoBlock and writeNoBlock� readaNoBlock and readNoBlock� readaBlock and read�
Block	

� IO functor

The precise de�nition of �conventional� streams �IO signature� is in terms of �lazy functional� streams
�STREAM IO�	 The functor IO is provided�

functor IO�structure S � STREAM�IO� � IO � 			

The structures BinIO and TextIO are �presumably� built using separate applications of this functor �though
TextIO is then enhanced with stdIn� etc	�� but users may apply the StreamIO and IO functors to make
streams data types other than char and byte	

The semantics of IO are simple enough that it is su�cient to give a reference implementation	

functor IO�structure S � STREAM�IO� � IO �

let abstraction I � sig include IO sharing StreamIO�S end �

struct

structure StreamIO � S

type instream � S	instream ref

type outstream � S	outstream ref

type elem � S	elem

type vector � S	vector

type pos � S	pos

val mkInstream � ref

val getInstream � �

val setInstream � op ��

val mkOutstream � ref

val getOutstream � �

val setOutstream � op ��

fun endOf f � if S	endOfStream f then f else endOf����S	input f��

fun closeIn�r as ref f� � �S	closeIn f� r �� endOf f�

fun setPosIn�r as ref f� i� � r �� S	setPosIn�f�i�

val getPosIn � S	getPosIn o �

val endPosIn � S	endPosIn o �

fun inputN �r as ref f� n� � let val �v�f�� � S	inputN�f�n� in r��f�� v end

fun input �r as ref f� � let val �v�f�� � S	input f in r��f�� v end

fun input� �r as ref f� � let val �v�f�� � S	input� f in r��f�� v end

fun inputNoBlock �r as ref f� �

case S	inputNoBlock f

of SOME�v�f�� �� �r �� f�� SOME v�

� NONE �� NONE

fun inputAll�r as ref f� � let val v � S	inputAll f

in r �� endOf f� v end

val endOfStream � S	endOfStream o �

fun lookahead�ref f� � ���S	input� f�

val closeOut � S	closeOut o �

fun output�ref f� v� � S	output�f�v�

fun output��ref f� x� � S	output��f�x�

val getPosOut � S	getPosOut o �

fun setPosOut�ref f� i� � S	setPosOut�f�i�

val endPosOut � S	endPosOut o �

val flushOut � S	flushOut o �

��



end

in I

end

Note that the instream and outstream types are abstract	
Some consequences of this de�nition�
The endOfStream semantics are

fun endOfStream �f as ref ff� � StreamIO	endOfStream ff

This implies

let val x � endOfStream f

val y � endOfStream f

in x�y �� guaranteed true ��

Furthermore� second call to endOfStream is guaranteed not to do any system call� this is a consequence of
the �Don�t bother the reader� semantics of StreamIO�input	

However� reading past end of stream is possible via input� the semantics may be straightforwardly derived
from the semantics of StreamIO�input	

The output operations �which were not lazy functional to begin with� are even more similar between
STREAM IO and IO	 The only purpose of the extra ref in IO is to allow �output redirection	�

� Application Notes

��� Random access reading�writing to the same stream

Instreams are instreams� outstreams are outstreams� and ne�er the twain shall meet	 At least� not face to
face	 However� competent users can construct many things from the layered functors	

Here�s an example� reading and writing to the same random
access �le without re
opening it	


	 Open the �le for reading� and for writing� extract the underlying reader and writer� discarding the
bu�ering layer	

val reader � TextIO	StreamIO	getReader

�TextIO	getInstream�TextIO	openIn name��

val writer � TextIO	StreamIO	getWriter

�TextIO	getOutstream�TextIO	openOut name��

�	 Do some bu�ered writes� then discard the bu�ering layer	

let val out � TextIO	mkOutstream�TextIO	StreamIO	mkOutstream�writer��

in TextIO	setPosOut�out�somePos��

output�out��Hello ���

output�out��World�n���

flushOut out

end

�	 Do some bu�ered reads� then discard the bu�ering layer	

let val inf � TextIO	mkInstream�TextIO	StreamIO	mkInstream�reader��

in TextIO	setPosIn�inf�anotherPos��

input inf�

input inf

end

�	 And so on	 It�s cheap and easy to do mkInstream whenever switching between reading and writing	

�




��� Other reader�writer devices

The functionsTextIO�openIn andTextIO�openOut provide system
default ways to create streams �whose
underlying readers and writers can be extracted�� from ��le names	�

SML implementations are likely to provide other ways to create readers and writers	 For example�

structure Socket �

sig type socketName

structure P � TextIO	StreamIO	PrimIO

val openSocketTextReader� socketName �� P	reader

val openBidirectionalSocket� socketName ��

P	reader � P	writer

	 	 	

end

Then the user could bu�er these readers by using mkInstream	
Alternatively� a Socket interface could provide the high
level instream�

structure Socket �

sig type socketName

val openSocketTextIn� socketName �� TextIO	instream

val openBidirectionalSocket� socketName ��

TextIO	instream � TextIO	outstream

	 	 	

end

and the user could extract the reader by using getInstream and getReader	

��� String readers�writers

A useful kind of reader�writer is an internal text queue� not using any devices at all�

local

fun primPipe�� � TextIO	StreamIO	PrimIO	reader �

TextIO	StreamIO	PrimIO	writer �

	 	 	

in

fun pipe�� � instream � outstream �

�� layer mkInstream and mkOutstream on

components of primPipe�� ��

end

It would be natural to provide such functions in a library	
Here�s an even simpler example�

fun stringReader�source � string� � TextIO	StreamIO	PrimIO	reader �

let val pos � ref �

fun read n � let val p � �pos

val m � min�n� size source � p�

in pos �� p�m� substring�source�p�m�

end

Rd�readNoBlock � SOME�fn n �� SOME�read n���

readaNoBlock � NONE�

readBlock � SOME�read��

readaBlock� NONE�

block � SOME�fn��������

canInput � SOME�fn����true��

��



name���string���

chunkSize�size source�

close�fn�������

getPos�fn����FilePosInt	fromDefault��pos��

findPos�fn��data�first�nelems
�p���p�nelems�

setPos���fn k �� if ���k andalso k �� size source then pos��k

else raise Fail �position out of bounds��

o FilePosInt	toDefault��

endPos��fn����FilePosInt	fromDefault�size source��


end

val openString � string �� instream �

TextIO	mkInstream o TextIO	StreamIO	mkInstream o stringReader

��� Translated readers

Sometimes one wants to apply a translation function to a stream	 For example� one might want to translate
CR
LF to LF on input� or translated escape
coded ASCII into Unicode	 I shall discuss translated input
streams �readers� here� but the same ideas apply to translated output streams �writers�	

Since anyone is allowed to counterfeit a reader� it is easy to write a translation function on readers�

fun translate� �source� TextIO	PrimIO	reader� � TextIO	PrimIO	reader

or

fun translate� �source� BinIO	PrimIO	reader� � TextIO	PrimIO	reader

Here�s an example�

fun remove�CR�rd� as TextIO	StreamIO	PrimIO	Rd rd� �

TextIO	StreamIO	PrimIO	reader �

let fun charCR��������� � ��

� charCR c � implode c

fun stringCR s � concat�mapChar charCR �s���size s��

fun option f NONE � NONE

� option f �SOME x� � SOME�f x�

fun retranslate�����pos� � pos

� retranslate�read�nelems�pos� �

let val s � read nelems

val len � size s

fun loop�i�n�p� � if i�s then retranslate�read�n�p�

else if n�� then p

else if CharVector	sub�s�i�� �������

then loop�i���n�p�

else loop�i���n���p�

in loop���nelems�pos�

end

in TextIO	StreamIO	PrimIO	Rd�

readNoBlock � option �fn get �� option stringCR o get�

��readNoBlock rd��

readaNoBlock � �� etc	 ���

readBlock � option �fn get �� stringCR o get� ��readBlock rd��

readaBlock� �� etc	 ���

block � �block rd�

canInput � �canInput rd�

name� �name rd�

chunkSize� �chunkSize rd�

��



close� �close rd�

setPos��setPos rd�

endPos��endPos rd�

getPos��getPos rd�

findPos�

case �TextIO	StreamIO	PrimIO	augmentIn rd��

of TextIO	StreamIO	PrimIO	Rd�readBlock�SOME readb�			
 ��

fn ��data�first�nelems
�pos���

let val p� � �getPos rd ��

val p� � �setPos rd pos�

retranslate�readb�nelems�pos��

in �setPos rd p�� p�

end


� � �� raise Fail �Cannot findPos�

end

Note that the positions in this translated reader �and thus in the translated stream� do not correspond

�
 to positions in the underlying reader	 Thus� 	ndPos must be implemented	 A good� simple solution is
to avoid random access on translated streams�

findPos � fn � �� raise Fail �Cannot findPos�

But here we have chosen to provide 	ndPos whenever possible	 Because the translation is not invertible
�we don�t know where the CR characters might have been�� 	ndPos must re
read the original stream	

Users who need to do random access on translated streams might alse use a solution similar to the one
in section �	
� do setPos on the underlying� untranslated reader	 Then� after each setPos� apply afresh the
translation function �such as remove CR and then apply a new bu�er �via mkInstream�	

��� Abstract positions

In applications where one wants seekable� translated readers with �moded escapes� it is di�cult represent
positions as integers	 This will happen if escape characters semi
permanently change the translation state
of a stream� rather than a�ecting just the next character	

In such a case� one might want to have an abstract data type position� with a total ordering but without
a mapping to integers	

One way to accomplish this is to make a new structure matching the PRIM IO signature�

abstraction MyTextPrimIO � PRIM�IO �

PrimIO�structure A � CharArray

structure V � CharVector

val someElem � �������

type pos � MyPosType	pos�

Now one can write translated readers that can deal with translated positions more �exibly	
The StreamIO functor can be used to create a bu�ered I�O system for these new readers�writers�

structure MyStreamIO �

StreamIO�structure PrimIO � MyPrimIO

	 	 	

val posLess � MyPosType	�

val posDiff � NONE�

Or� posDiff�SOME�MyPosType	�� if possible	
Now MyStreamIO	instream is a di�erent type than TextIO	StreamIO	instream� so one cannot use the

same function to operate on both kinds of instreams unless this function is in a functor parameterized by
StreamIO	

Also� it is possible to write a function to translate aMyPrimIO�reader into an ordinaryPrimIO�reader
�but with setPos disabled��

��



val NoRandomAccess � Fail �Random access not supported on this stream�

fun standardize �MyPrimIO	Rd rd� �

TextIO	StreamIO	PrimIO	Rd�

readNoBlock � �readNoBlock rd�

readaNoBlock � �readaNoBlock rd�

readBlock � �readBlock rd�

readaBlock� �readaBlock rd�

block � �block rd�

canInput � �canInput rd�

name� �name rd�

chunkSize� �chunkSize rd�

close� �close rd�

getPos�fn � �� ��

findPos�fn � �� raise NoRandomAccess�

setPos�fn � �� raise NoRandomAccess�

endPos�fn � �� raise NoRandomAccess


��	 Lexical analysis

Lexical analyzers need to process their input e�ciently� and often need some amount of lookahead	 Line

oriented applications need to read one line of text at a time� e�ciently	 Both of these applications can make
e�ective use of lazy
stream input	

Consider the implementation of an inputLine function� that reads up to the next newline character	 A
naive implementation would read characters� then concatenate them�

fun inputLine �f� TextIO	instream� �

let fun loop �� � case input� f

of SOME����n�� �� ���n�

� SOME c �� c �� loop��

� NONE �� nil

in implode �loop���

end

Now� we may wish to avoid all the list construction and implode call	 Thus�

fun inputLine �f� TextIO	instream� �

let val g� � TextIO	getInstream f

fun loop�i�g� � case input� g

of �SOME����n����� �� i��

� �SOME c� g�� �� loop�i���g��

� �NONE��� �� i

in TextIO	inputN�loop���g���

end

This has the e�ect of looking through the input bu�er for a newline character� then extracting just the
right
length string from the input bu�er� but it�s all done abstractly	

There are no list constructions� and only one string copy� the extract implied by the inputN call	 On
the other hand� there is a function call for each character� I do not see this as a problem	 We expect
ML programs �or� in fact programs in any language� to implement abstract data types via a function
call
interface� if this becomes a source of ine�ciency� perhaps the solution is for compilers to implement cheaper
function calls	

A very similar approach works for lexical analyzers which do more general �perhaps multi
character�
lookahead� First scan the lazy stream to determine the length of the token� then use inputN to extract it
and advance the stream	

InputLine is provided as a standard function of TextIO� but this implementation is explained to
illustrate how variations on it can be constructed	

��


